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Language Review

Turing Machine Variants

Consider a Multi-Head Turing Machine. This is a single-tape Turing machine with multiple
read/write heads. However, in every state only one head may be used. Therefore, for k heads we
have a partition of states Q1, Q2, . . . , Qk where each Qi contains the set of states which use the ith
head. For k = 3, we might have something like:
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Example Usage

This variant is a useful for certain problems. Consider the language L = {anbncn |n ≥ 0}. We
know this language is not context-free, but we can build a multi-head Turing machine with k = 3
to recognize this language. Lets call this machine M , which works as follows:

M = “On input w:

1. Initialize each head as follows:

(a) Let head 1 rest on the first input symbol of w.
(b) Let head 2 scan the input for consecutive a symbols until the first b is encountered.
(c) Let head 3 scan the input for consecutive a symbols, followed by consecutive b

symbols, until a c is encountered.

At this point head 1 should rest on the first a symbol, head 2 should rest on the first
b symbol, and head 3 should rest on the first c symbol.

2. Until the end of string is encountered, loop as follows:

(a) Test if head 1 rests on an a symbol and move right.
(b) Test if head 2 rests on a b symbol and move right.
(c) Test if head 3 rests on a c symbol and move right.

If head 3 rests on a symbol, then the end of the string is has been encountered and
we go on to the next step.

3. Accept if at the end of the string we have the following:

(a) Head 1 rests on the first b symbol.
(b) Head 2 rests on the first c symbol.
(c) Head 3 rests on the first symbol.

Otherwise, reject the string if any of the tests fail.”

There are some missing details. For example, in the initialization phase if head 2 does not find
consecutive a symbols at the start of the string, we reject. Or, if during the loop head 1 rests on a
b symbol before the end of the string is reached, then we reject.

Equivalence

A multi-head Turing machine is equivalent to a normal Turing machine. Let Mmh be a multi-head
Turing machine and Mtm be a normal Turing machine. To show that they are equivalent, we must
provide two arguments.

Argument 1: For any normal Turing machine Mtm, there exists some multi-head Turing machine
Mmh such that L(Mtm) = L(Mmh).

To show this, we need to show that Mtm can be simulated by some Mmh. This part of the proof is
simple. We can build Mmh such that it forces all the states to use the same read/write head. The
rest of the heads can be ignored. The states and transitions remain the same as in Mtm.
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Argument 2: For any multi-head Turing machine Mmh, there exists some normal Turing machine
Mtm such that L(Mmh) = L(Mtm).

We must show that Mmh can be simulated by some Mtm. This part is trickier. We could do
something similar to the proof for a multi-tape Turing machine, and use some modifier on the
symbols to track where the different heads are located on the tape. For example:

a a ȧ b b b. c c c c’ · · ·

However, we already know multi-tape Turing machines are equivalent to normal Turing machines.
We could alternatively show that for any multi-head Turing machine Mmh, there exists some multi-
tape Turing machine Mmt such that L(Mmh) = L(Mmt).

Lets create a k-tape Turing machine Mmt to simulate a k-head Turing machine Mmh as follows:

1. Initialize every tape in Mmt with the input string.

2. Whenever head i is moved in Mmh, move the head in the ith tape in Mmt.

3. Whenever any head in Mmh writes a symbol, write the same symbol on the same position on
every tape in Mmt.

Everything else would be the same in Mmt as in Mmh. So we would end up with something like:

Since we know L(Mmt) = L(Mtm), we can conclude L(Mmh) = L(Mmt) = L(Mtm). Of course, all
we have given here is an abstract idea of how to do this. The devil is in the details. You need to
convince yourself that every step is correct.

Decision Procedure

A decision procedure is a procedure that provides a yes or no answer for a decision problem.
A decider is a Turing machine that halts on all inputs. (It always accepts or rejects a string.)
Therefore, we can re-formulate our decision procedures as deciders.
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Consider the procedure for deciding if L(G) = ∅ for a context-free grammar G. The general idea
behind this is to:

1. Mark all the terminal symbols.

2. Until there is nothing more to mark:

(a) If the right-hand side (RHS) is completely marked, mark the left-hand side (LHS).

(b) Mark every occurrence of that LHS.

3. If the start symbol is marked, then output YES. Otherwise output NO.

Consider the grammar G for a ∗ b∗:

S → A|B|AB
A → aA|ε
B → bB|ε

To create a Turing machine to decide this, we need to somehow input our grammar to the Turing
machine as a string. We can create a string from the formal description of the grammar. For the
grammar above, our input tape might look like this:

S A B # a b ε # S A # S B # S A B # (continued on next line...)

A a A # A ε # B b B # B ε # · · ·

We know that the first symbol is the start symbol, followed by variables. After the first # we have
our alphabet symbols. Following the next # we have rules where the first symbol is the left hand
side, and all the symbols until the next # make up the right hand side. We know we are done with
rules once we reach the first blank.

This allows us to feed our grammar to a Turing machine. In general we use the 〈 〉 notation to
represent the string encoding of some object. So for this case, we want to give 〈G 〉 to our Turing
machine M .

Our decider M will then work as follows:

M = “On input 〈G 〉:

1. Skip to the rules and mark each terminal found. (We know what are terminals from
the start of the tape.)

2. Until no new variables are marked, for each rule do the following:

(a) If every symbol from the RHS of our rule is marked, mark the LHS.
(b) Scan all the rules and mark every occurrence of the LHS.

3. If the start variable is marked, accept. Otherwise, reject.”
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For example, after the first step our tape looks like:

S A B # a b ε # S A # S B # S A B # (continued on next line...)

A ȧ A # A ε̇ # B ḃ B # B ε̇ # · · ·

Again, the devil is in the details. For example, how do we know if no new variables have been
marked? We can set aside another cell on our tape. Before we start our scan, write a 0 in this field.
If we mark a symbol, write a 1 in this cell. If there is still a 0 in the cell, then no new symbols have
been marked.
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