
ECS120 Fall 2006

Discussion Notes

November 22, 2006

Announcements

• The second quiz was given on Tuesday, November 21st.

• Homework 8 has been posted. It is due Thursday, November 30th.

• There will only be 9 homeworks total.

• There will be a guest speaker on the last day of class. You are highly encouraged to attend.

Beyond Turing Machines

Lets revisit the language hierarchy we have covered so far:

Are there languages beyond Turing-recognizable languages? The answer is yes, some languages
are not Turing-recognizable (corollary 4.18). The intuition behind this proof uses two key
observations.

The first key observation is that the set of all Turing machines is countable. Each Turing
machine has a string encoding, and the set of all strings Σ∗ is countable.

Intuition: While there are infinitely many strings, any single string has finite length. Futhermore,
there are a finite number of strings of that length. Therefore, this set contains an infinite number
of elements of finite length (similar to N).

1

The second key observation is that the set of all languages is uncountable.

Intuition: Languages may be infinite, unlike strings. There are also an infinite number of languages.
Therefore, this set contains an infinite number of elements of infinite size (similar to R).

Since we have more languages than Turing machines, there must be some languages that cannot
be represented by a Turing machine. (These are often called Turing-unrecognizable languages.)

What implication does this have? This means for some problems there is no way to “effectively
compute” them, even with the most powerful computers.

The Acceptance Problem

The language ATM = { 〈M,w 〉 |M is a TM and M accepts w } is undecidable. It is important to
understand this result, as we will reuse this in several reductions.

First, we design a TM H that is magically able to tell when M accepts w, even if M loops forever.
Basically, we assume H is a decider for ATM:

We want to show that if H exists, then we are able to do something we know to be impossible.
This is why we build the TM D:

Essentially, D outputs the complement of H. Notice that we may give D its own description:

2

However, when we do this we get a contradiction (in red). The outer D must reject when the inner
D accepts. A Turing machine cannot both accept and reject at the same time on the same input.
Therefore, H must not exist.

The Halting Problem

The halting problem, HALTTM = { 〈M,w 〉 |M is a TM and M halts on input w }, is undecidable.
You should already have some intuition behind why some Turing machines will never halt.

To prove this, we want to show that if a decider exists for HALTTM, then we are able to do
something we know to be impossible. We know that ATM is undecidable, so lets try to reuse that
knowledge.

Suppose for the sake of contradiction that HALTTM is decidable. Let R be a decider for HALTTM.
We can build a decider S for ATM as follows:

3

This shows that if R decides HALTTM, then we should be able to build a decider S for ATM. We
know this is impossible, so R must not exist.

The Emptiness Problem

The emptimess problem, ETM = { 〈M 〉 |M is a TM and L(M) = ∅ }, is undecidable.

We are going to follow the same pattern. Suppose for the sake of contradiction that ETM is
decidable. Let R be a decider for ETM. The TM R accepts 〈M 〉 as input, and outputs whether
L(M) is empty. Is it possible to build a decider S to solve ATM with R?

We know that if L(M) is empty, then it rejects all strings. However, if L(M) is not empty, M could
accept or not attempt the string.

To get around this, we introduce a new Turing machine M1. We can then build a decider S for
ATM:

Of course, this results in a contradiction since we know ATM is undecidable. Therefore, no such R
exists and ETM must be undecidable.

** Note: These are all in your book. I just tried to give diagrams to help your intuition for
what is going on, and how we reduce these problems. Please refer to the book for the actual TM
descriptions and proofs.

4

