ECS120 FALL 2006 Discussion Notes

November 28, 2006

The Emptiness Problem Revisited

The emptiness problem, $E_{\mathrm{TM}}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\emptyset\}$, is undecidable.
We showed an informal proof of this during last discussion:

Informally, we assume R is a decider for $E_{\text {TM }}$. Then we build S to decide $A_{\text {TM }}$ by building the Turing machine M_{1} and feeding it to R. Finally, S outputs the opposite result of R.

In fact, what we have done here is reduce the problem of $A_{\text {TM }}$ to the complement of $E_{\text {TM }}$. More formally, we are showing that if $A_{\mathrm{TM}} \leq_{\mathrm{m}} \overline{E_{\mathrm{TM}}}$ and A_{TM} is undecidable, then $\overline{E_{\mathrm{TM}}}$ is undecidable (corollary 5.23 on page 208).

Lets do this reduction more formally now, and give a computable function that shows $A_{\mathrm{TM}} \leq \leq_{\mathrm{m}} \overline{E_{\mathrm{TM}}}$.
First, we need to figure out what the input and output of our function needs to be. Since elements of $A_{\text {TM }}$ are in the form $\langle M, w\rangle$, this will be the input of our function. Since the elements of $E_{\text {TM }}$ are in the form $\langle M\rangle$, this will be the output of our function. This gives:
$F=$ "On input $\langle M, w\rangle$:

1. ...
2. Output $\left\langle M^{\prime}\right\rangle$."

Second, we need to figure out what we want to actually show. Remember, for mapping reducibility we need the relationship where $\langle M, w\rangle \in A_{\mathrm{TM}} \Leftrightarrow\left\langle M^{\prime}\right\rangle \in \overline{E_{\mathrm{TM}}}$, or equivalently, $\langle M, w\rangle \in A_{\mathrm{TM}} \Leftrightarrow$
$\left\langle M^{\prime}\right\rangle \notin E_{\mathrm{TM}}$ (definition 5.20 on page 207). This means, we want to construct a Turing machine M^{\prime} such that when M accepts w, M^{\prime} is not empty. This gives:

$$
F=\text { "On input }\langle M, w\rangle \text { : }
$$

1. Construct M^{\prime} as follows: $M^{\prime}=$ "On input ??:

- If M accepts $w \ldots$ (accept something).
- If M does not accept $w \ldots$ (accept nothing)."

2. Output $\left\langle M^{\prime}\right\rangle$."

We are getting closer. However, we still have some gaps to fill in. First, lets think about M^{\prime} some more. Our aim is to build a Turing machine M^{\prime} such that $L\left(M^{\prime}\right) \neq \emptyset$ if M accepts w and $L\left(M^{\prime}\right)=\emptyset$ if M rejects w. We only care about the language of this Turing machine, not the simulation of it. Also, this Turing machine is created for a specific M and w pair. However, it may accept input like any other Turing machine. Therefore we have:

$$
F=" \text { On input }\langle M, w\rangle \text { : }
$$

1. Construct M^{\prime} as follows: $M^{\prime}=$ "On input x :

- If M accepts $w \ldots$ (accept something).
- If M does not accept $w \ldots$ (accept nothing)."

2. Output $\left\langle M^{\prime}\right\rangle$."

Now we must decide what to do with the input of M^{\prime}. Remember, we want $L\left(M^{\prime}\right)$ to be empty when M rejects w. So lets start by rejecting all input not equal to w :
$F=$ "On input $\langle M, w\rangle$:

1. Construct M^{\prime} as follows: $M^{\prime}=$ "On input x :
(a) If $x \neq w$, reject.

- If M accepts $w \ldots$ (accept something)."

2. Output $\left\langle M^{\prime}\right\rangle$."

Finally, if $x=w$ we want to accept only if M accepts w. We determine this by simulating M on w. If M accepts w, we must accept x :

$$
F=" \text { On input }\langle M, w\rangle \text { : }
$$

1. Construct M^{\prime} as follows:
$M^{\prime}=$ "On input x :
(a) If $x \neq w$, reject.
(b) If $x=w$, simulate M on w.
(c) If M accepts w, accept.
2. Output $\left\langle M^{\prime}\right\rangle$."

This gives us our Turing-computable function F. However, we are not quite done. We need to show that $\langle M, w\rangle \in A_{\text {TM }} \Leftrightarrow\left\langle M^{\prime}\right\rangle \notin E_{\text {TM }}$ holds.

Notice that if $\langle M, w\rangle \in A_{\text {TM }}$, then M^{\prime} will accept a single string $x=w$. Therefore, $L\left(M^{\prime}\right) \neq \emptyset$. This gives $\langle M, w\rangle \in A_{\text {TM }} \Rightarrow\left\langle M^{\prime}\right\rangle \notin E_{\mathrm{TM}}$.

If $\left\langle M^{\prime}\right\rangle \notin E_{\mathrm{TM}}$, then we know $L\left(M^{\prime}\right) \neq \emptyset$. The only string M^{\prime} will ever accept is $x=w$, and this happens only when M accepts w. Therefore, we have $\left\langle M^{\prime}\right\rangle \notin E_{\text {TM }} \Rightarrow\langle M, w\rangle \in A_{\text {TM }}$.

Showing that $\langle M, w\rangle \in A_{\mathrm{TM}} \Leftrightarrow\left\langle M^{\prime}\right\rangle \notin E_{\mathrm{TM}}$ holds may not take a lot of work, but is necessary in showing that $A_{\text {TM }} \leq{ }_{\mathrm{m}} \overline{E_{\text {TM }}}$.

So now, we have proven that $\overline{E_{\mathrm{TM}}}$ is undecidable. What about E_{TM} ? (Think about Theorem 4.22 on page 181.)

The Equivalence Problem

The equivalence problem, $E Q_{\text {TM }}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$, is undecidable. We will show this by showing that $E_{\mathrm{TM}} \leq_{\mathrm{m}} E Q_{\mathrm{TM}}$ and using Corollary 5.23.

First, we need to figure out what the input and output of our function needs to be. Since elements of E_{TM} are in the form $\langle M\rangle$, this will be the input of our function. Since the elements of $E Q_{\mathrm{TM}}$ are in the form $\left\langle M_{1}, M_{2}\right\rangle$, this will be the output of our function. This gives:
$F=$ "On input $\langle M\rangle$:

1. ...
2. Output $\left\langle M, M^{\prime}\right\rangle$."

Second, we need to figure out what we want to actually show. We want the situation where if $L(M)$ is empty, then $L(M)=L\left(M^{\prime}\right)$. Since $L(M)$ is empty, we have $L(M)=L\left(M^{\prime}\right)$ only when $L\left(M^{\prime}\right)$ is also empty. Therefore, we get:

$$
F=\text { "On input }\langle M\rangle \text { : }
$$

1. Construct M^{\prime} as follows:

$$
M^{\prime}=\text { "On input } x: \text { reject." }
$$

2. Output $\left\langle M, M^{\prime}\right\rangle$.

Now, we must show that $\langle M\rangle \in E_{\mathrm{TM}} \Leftrightarrow\left\langle M, M^{\prime}\right\rangle \in E Q_{\text {TM }}$ holds.
If $L(M)$ is empty, then $L(M)=L\left(M^{\prime}\right)$ since $L\left(M^{\prime}\right)$ is empty. This gives $\langle M\rangle \in E_{\mathrm{TM}} \Rightarrow\left\langle M, M^{\prime}\right\rangle \in$ $E Q_{\text {TM }}$. If $L(M)=L\left(M^{\prime}\right)$, then $L(M)$ is empty since $L\left(M^{\prime}\right)$ is empty. This gives $\left\langle M, M^{\prime}\right\rangle \in$ $E Q_{\text {Тм }} \Rightarrow\langle M\rangle \in E_{\text {Тм }}$.

Again, these statements seem apparent, but are necessary in completing our proof.

Guide To Classifying Languages

Claim: L is decidable.

There are three methods you may use to prove this is true. The easiest is to use definition 3.6 (page 142). This states that a language is decidable if some Turing machine decides it. Therefore, you may provide a decider Turing machine M such that $L(M)=L$ to prove L is decidable.

Alternatively, you may use theorem 4.22 (page 181). This states that a language is decidable iff it is Turing-recognizable and co-Turing recognizable. If you show that L is both recognizable and co-recognizable, you prove that L is decidable. How to prove a language is Turing-recognizable or co-Turing-recognizable is covered in the following sections.

Finally, you may use theorem 5.22 (page 208). This states that if $A \leq_{\mathrm{m}} B$ and B is decidable, then A is decidable. If you show that $L \leq_{\mathrm{m}} D$ where D is already proven to be decidable, then you prove that L is also decidable.

Claim: L is Turing-recognizable (or acceptable).

The easiest method is to use definition 3.5 (page 142). This states that a language is Turingrecognizable if some Turing machine recognizes it. Therefore, you may provide a Turing machine M such that $L(M)=L$ to prove L is recognizable.

You may also use theorem 3.21 (page 153). This states that a language is Turing-recognizable if and only if some enumerator enumerates it. Therefore, if you provide an enumerator M such that $L(M)=L$, then you prove L is Turing-recognizable.

We also know that every decidable language is Turing-recognizable (page 142). Therefore, if you already know L is decidable, then you know L is also Turing-recognizable.

Finally, you may use theorem 5.28 (page 209). This states that if $A \leq_{\mathrm{m}} B$ and B is Turingrecognizable, then A is Turing-recognizable. If you show that $L \leq_{\mathrm{m}} R$ where R is recognizable, you prove that L is also Turing-recognizable.

However, if you want to prove that L is just Turing-recognizable and not also decidable, you must prove that L is undecidable. How to do this is given in the following sections.

Claim: L is co-Turing-recognizable.
This is done by showing that the complement of L is Turing-recognizable. Use the methods from above to show this.

Claim: L is undecidable.

You may use theorem 4.22 (page 181). This states that a language is decidable iff it is Turingrecognizable and co-Turing recognizable. Therefore, if L is not Turing-recognizable or co-Turing recognizable, then L is not decidable. How to show this is provided in the following sections.

Finally, you may use corollary 5.23 (page 208). This states that if $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undecidable. Therefore, you must show that $U \leq_{\mathrm{m}} L$ for some undecidable language U.

Claim: L is not Turing-recognizable.

You may again use theorem 4.22 (page 181). This states that a language is decidable iff it is Turing-recognizable and co-Turing recognizable. Therefore, if you know that L is undecidable and \bar{L} is recognizable, then L may not also be recognizable. This method was used on corollary 4.23 (page 182).

Finally, you may use corollary 5.29 (page 210). This states that if $A \leq_{\mathrm{m}} B$ and A is not Turingrecognizable, then B is not Turing-recognizable. Therefore, you must show that $S \leq_{\mathrm{m}} L$ for some language S which is not Turing-recognizable.

Claim: L is not co-Turing-recognizable.
This is done by showing that the complement of L is not Turing-recognizable. For example, you could use theorem 4.22 and show that L is undecidable and recognizable, meaning \bar{L} must not also be recognizable.

Summary:

I've tried to summarize all the methods we have covered in the following table. Please let me know if anything is missing!

Claim:	Method:	Thm:	Pg:
L is decidable.	Give a decider M such that $L(M)=L$.	3.6	142
	Show L is recognizable and co-recognizable.	4.22	181
	Show $L \leq_{\mathrm{m}} B$ for a decidable language B.	5.22	208
L is recognizable.	Give a Turing machine M such that $L(M)=L$.	3.5	142
	Give an enumerator M such that $L(M)=L$.	3.21	153
	Show $L \leq_{\mathrm{m}} B$ for a recognizable language B.	5.28	209
L is co-recognizable.	Show that \bar{L} is recognizable.	-	181
L is undecidable.	Show L is not recognizable.	4.22	181
	Show L is not co-recognizable.	4.22	181
	Show $A \leq_{\mathrm{m}} L$ for some A which is undecidable.	5.23	208
L is not recognizable.	Show L is undecidable \& co-recognizable.	4.22	181
	Show $A \leq_{\mathrm{m}} L$ for some A which isn't recognizable.	5.29	210
L is not co-recognizable.	Show L is undecidable \& recognizable.	4.22	181
	Show that \bar{L} is not recognizable.	5.29	210

