Discussion Notes
 Wednesday, October 16, 2007

Decision Procedures

Decision procedures are basically algorithms which provide with certainty a yes or no answer. When giving us a decision procedure make sure to (1) specify your algorithm and (2) explicitly state when your algorithm outputs a YES answer and when it outputs a NO answer.

There are two useful techniques for creating decision procedures. If you are lucky, you can break down the problem you are solving into sub-problems which already have solutions. You can then reuse those solutions in solving the main problem.

Otherwise, you need to construct an algorithm which uses what you know or can assume. If we know a language L is regular, we know it can be represented by a DFA, NFA, or regular expression. Therefore we can show how to solve our problem given a DFA, NFA, and regular expression. The catch is that we should try and provide a polynomial-time algorithm for each case.

Example 1

Let L_{1} and L_{2} be regular languages. Describe a decision procedure that determines if L_{1} and L_{2} have at least 1 string in common.

First, we should try and break down the problem. How do we know when L_{1} and L_{2} share at least 1 string? This is true whenever $L_{1} \cap L_{2} \neq \emptyset$.

Therefore, we want to build an algorithm:

$$
\operatorname{SimiLAR}\left(L_{1}, L_{2}\right)= \begin{cases}\text { YES } & \text { if } L_{1} \cap L_{2} \neq \emptyset \\ \text { NO } & \text { otherwise }\end{cases}
$$

So now the problem has become determining if $L_{1} \cap L_{2} \neq \emptyset$. Notice that now we can break this into sub-problems. We need to find $L_{1} \cap L_{2}=L_{3}$, and then determine if $L_{3} \neq \emptyset$.

We already know how to do $L_{1} \cap L_{2}=L_{3}$. For now, lets assume we have a procedure $\operatorname{Intersect}\left(L_{1}, L_{2}\right)$.
We know that L_{3} is regular. Therefore, we can also use the decision procedure discussed in class for determining if $L_{3}=\emptyset$. Lets call this procedure $\operatorname{IsEmpty}(L)$.

Now we can put the two together, and define our Similar algorithm:
$\operatorname{Similar}\left(L_{1}, L_{2}\right):$

1. Find $\operatorname{Intersect}\left(L_{1}, L_{2}\right)=L_{3}$
2. Run IsEmpty $\left(L_{3}\right)$:

- If $\operatorname{IsEmpty}\left(L_{3}\right)=$ YES, then output NO.
- Else, output YES.

Example 2

Let L_{1} and L_{2} be regular languages. Describe a decision procedure that determines if w is not in L_{1} or in L_{2}.

Essentially, this is determining if $w \notin L_{1} \cup L_{2}$. We know how to take the union of two languages, and already discussed a decision procedure for $w \in L$ in class. Therefore we get:
$\operatorname{Example} 2\left(L_{1}, L_{2}, w\right):$

1. Find $\operatorname{Union}\left(L_{1}, L_{2}\right)=L_{3}$
2. Run $\operatorname{IsMember}\left(L_{3}, w\right)$:

- If $\operatorname{IsMember}\left(L_{3}, w\right)=$ YeS, then output no.
- Else, output YES.

