ECS150 Discussion Section

Sophie Engle
(January 28/30 2004)

m 233 San=duline

" Introduction & Terminology
¢ Types of Schedulers
¢ Scheduling Considerations & Performance
¢ Algorithm Characteristics

= Algorithms
¢ Shortest Job First
¢ Highest Response Ratio Next
¢ Selfish Round Robin
¢ Multi-level Feedback

= Evaluation
¢ Little’s Law

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 2]

= Some scheduling notes online from previous
ECS150 course

¢ http://nob.cs.ucdavis.edu/classes/ecs150-2000-
winter/Pdf/scheduling.pdf

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 3]

Process Scheduling

Boring Stuff
(Terminology)

TYPESIOIESEHEUMEYS

" | ong-term Scheduler

¢ Determines which jobs are admitted to the
system for processing

= Medium-term Scheduler

¢ When too many processes competing for
memory, determines which get swapped in/out

= Short-term Scheduler*

¢ Determines which process in memory (in ready
gueue) goes next

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 5]

eduling Considarztions

= What is the goal of a scheduler?
¢ Throughput
¢ Turnaround
¢ Response
¢ Resource use
¢ Waiting time
¢ Consistency
= Examples?

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 6]

eduling Considarztions

= What is the goal of a scheduler?
¢ Throughput — work done in a given time
¢ Turnaround — time to completion
¢ Response — time from submission to response
¢ Resource use — # of resources, waiting time
¢ Waiting time — time process in ready queue
¢ Consistency — runtime predictability

= Examples?

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 7]

eduling Parformzras

= How measure scheduling performance?
¢ Turnaround time (T)
— Time process present in system
¢ Waiting time (W)
- Time process present and not running

¢ Response ratio (R), Penalty ratio (P)
-1 Factor by which processing rate reduced

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 8]

eduling Parformzras

= How measure scheduling performance?
¢ Turnaround time (T)
o T =[finish time] — [arrival time]
¢ Waiting time (W)
o W =T —[service time]
¢ Response ratio (R)

1 R= T
service time

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 9]

mg- fienrn Crizirziecrariseios

= Decision mode

¢ Non-preemptive

—1 A process runs until it blocks are completes (runs until
no longer ready)

¢ Preemptive

-1 Operating system can interrupt currently running
process to start another one

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 10]

ma- fienrn Crizirziecrariseios

= Priority function, p(a, r, t)
¢ Assigns a priority to a process

¢ Usually involves
~1a: service time so far
- r: real time spent in system so far
~t: total required service time

= Arbitration rule

¢ Resolves ties when two processes have equal
priority

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 11]

Process Scheduling

Scheduling Algorithms

E oreagr Jorn) |Maer

= Shortest Job Next, First (SJN, SJF)

¢ Decision mode: non-preemptive
¢ Arbitration rule: chronological or random
¢ Priority function: p(a,r,t)=-t

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 13]

oreagr Jorn) |Maer

Ready queue

Process

Arrival time

Service time

A C| D E B

0 10 13 20 34 61

For process D:
Turnaround Time (T) = 20 - 3 17
waiting Time (W) = 17 - 7 10
Response Ratio (R) =17 / 7 = 2.3

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 14]

E oreagr Jorn) |Maer

= Pro:

¢ Gives smallest average turnaround time T out of
all non-preemptive priority functions

= Con:
¢+ Need to know service time before process runs

¢+ No way to know service time without running the
process!

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 15]

E oreagr Jorn) |Maer

= Solution:

¢+ Compute expected time of next CPU-burst as an
exponential average of previous bursts of process

t = length of nth CPU burst

t = expected length of next burst

=at +(-a)t,

where a is a parameter indicating how much to
count past history (usually %)

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 16]

oreagr Jorn) |Maer

12 --_,-

10
burst 5 _
i 4——estimated
ength B

4

actual
2
0

0 1 2 3 4 5 6 7 8
6 4 6 4 13 13 13 13
10 8 6 6 5 9 11 12 13

Comparing exponential estimation with actual values: a= 1/2

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 17]

G DE e OnSE IO

= Highest Response Ratio Next (HRRN, HRN)
¢ Decision mode: non-preemptive
¢ Arbitration rule: random or FIFO
¢ Priority function: p(a,r,t) = (see below)

estimated service time + waiting time so far

estimated service time

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 18]

= Shortest Job Next
¢ Favors short jobs

¢ Long jobs may have to wait a long time if short
jobs appear frequently in the queue

= Highest Response Ratio
¢+ Still favors short jobs

¢ More fair towards long jobs/processes

-1As long jobs wait their priority increases, giving them|a
chance to run

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 19]

E- HSHEIROUNUEROLIN

= Selfish Round Robin (SRR)

¢ Decision mode: preemptive (at quantum)
¢ Arbitration rule: first in, first out

¢ Parameters:
1 a: rate priority of process in new queue increase

- b: rate priority of process in accepted queue increase
71 g quantum

¢ Priority function: Let W be the time that a process must

wait before entering the accepted queue:

br r<w
p(r,W)=
bW+a(r—-W) r>W

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 20]

ERllrish stound sobin

" General Idea:
¢+ New jobs are placed in the new queue with an
initial priority of O
Priority of job In new queue increase at rate a
¢ Jobs move to the accepted queue when priority is
equal to the priority of the accepted queue
Priority of jobs in the accepted queue increase at rat¢ b

¢ Jobs chosen from accepted queue in round robir—
fashion

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 21]

SelSHEROUIUERGDIN

_quantum | | running | | next |
0 A A

New
Queue g 50

Accepted
A

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 22]

SelSHEROUIUERGDIN

_quantum | | running | | next |
1 A A

NEW

Queue 4 B(@3) C(0)

Accepted
A

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 23]

SelSHEROUIUERGDIN

_quantum | | running | | next |
2 A B

NEW

Quele 4 C(3) D(0)

Accepted
B6) A

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 24]

SelSHEROUIUERGDIN

_quantum | | running | | next |
3 B A

NEW

W] C6) DE) E©)

Accepted
AE) B

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 25]

SelSHEROUIUERGDIN

_quantum | | running | | next |
4 A B

New
Queue

Accepted
S 2 B(10) A(10)

Y CcO) D®B) E@3)

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 26]

SelSHEROUIUERGDIN

_quantum | | running | | next |
5 B A

New
Quele < D(9) E(6)

A ted
Tl A2 coa) sz

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 27]

SelSHEROUIUERGDIN

6

New
Queue

[discussion section

S D(12)

Accepted
c

Let the new queue increase at a rate of a = 3, accepted at b = 2.

(14)

A

E(9)

B(14)

A(14)

- ecs150 operating systems - winter quarter 2004]

C

[slide 28]

SelSHEROUIUERGDIN

/

C

New
Queue

Accepted
Queue

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section -

>

B

3 D(5) E(12)

B(16) A(16)

C(16)

ecs150 operating systems - winter quarter 2004]

[slide 29]

SelSHEROUIUERGDIN

8

B

New
Queue

Accepted
Queue

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section -

>

>

A

E(15)

A(18) C(18)

D(18) B(18)

ecs150 operating systems - winter quarter 2004]

[slide 30]

SelSHEROUIUERGDIN

9

New
Queue

Queue

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section

Accepted > e

Y E(18)

(20)

A

D(20)

B(20)

- ecs150 operating systems - winter quarter 2004]

C

A(20)

[slide 31]

SelSHEROUIUERGDIN

10

New
Queue

>

Accepted

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section -

E(21)

D(22)

C

B(22)

A(22)

ecs150 operating systems - winter quarter 2004]

D

C(22)

[slide 32]

SelSHEROUIUERGDIN

_quantum | | running | | next |
11 D B

New
Queue > B

B(24) A(24) C(24) E(24) D(24) -

Let the new queue increase at a rate of a = 3, accepted at b = 2.

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 33]

m 1laval Faacdnzial

= Multilevel Feedback Queues (MLF, MLFB)

¢ Decision mode: preemptive (at quantum)
¢ Arbitration rule: cyclic or chronological

¢ Parameters: n levels each of priority 7,
¢ Priority function: (see below)

pla)=n—i, 0<i<n
T,2' -1)<a<T,2""" -1)

assuming T =2"T

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 34]

m 1laval Faacdnzial

" General ldea:

¢ n different queues exist with different priorities
¢ Jobs start in uppermost level

- After getting 7, units of CPU time, job drop to next
lower level

~1Jobs continue to drop until reach lowest queue
+ Favors short jobs by giving them more CPU time

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 35]

Process Scheduling

Evaluation

® Deterministic modeling
¢+ Workout specific cases (like we did earlier)

= Simulation
¢+ Program a model, gather statistics

" Implementation
¢ Implement algorithm on a system and observe

" Queuing Theory*
¢ Represent system mathematically

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 37]

QU ENINUMNEDYY,

= Little’s Law
¢ L: mean queue length
¢ W: mean waiting time in queue
¢ a: mean arrival rate for new jobs in queue

L = aWw

¢+ Number of jobs leaving the queue is same as
number arriving

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 38]

