ECS150 Discussion Section

Sophie Engle
(February 11/13 2004)

= Website updated!
¢ Added information on compiling the Minix kernel
¢ Added more hints & tips for using Minix
¢ Added more common compile errors
¢ Updated grades

= Will have to know how to compile the Minix
kernel for next programming assignment!

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 2]

-
]

= Resources
¢ Tanenbaum p75—77
¢ Tanenbaum p166 — 179

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 3]

= Resource

¢ Anything that can only be used by a single
process at any instant

= Types
¢ Preemptable

- Resource can be taken away
o Example: Memory

¢ Nonpreemptable*
7 Resource can NOT be taken away
- Example: Printer

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 4]

m preemptable’ReESOUKCES

Available?

Request

1. Request
2. Use
3. Release

[discussion section - ecs150 operating systems - winter quarter 2004]

o

Use

Release

[slide 5]

-
e

= Definition:
¢ A set of processes is deadlocked if each process

in the set Is waiting for an event that only another
process in the set can cause

= Example:
¢ Process 1 is holding resource A, needs B
¢ Process 2 is holding resource B, needs A

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 6]

" Must have 2 forks to eat

" Everyone picks up left
fork at same time and
waits for right fork

" Nobody is able to eat,
deadlock occurs

Figure 2-16. Lunch time 1n the Philosophy Department.

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 7]

DeadlockiConditions

= Necessary Conditions:
¢ Mutual exclusion condition

¢ Hold and wait condition

¢ No preemption condition

¢ Circular wait condition

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 8]

DeadlockiConditions

= Necessary Conditions:

¢ Mutual exclusion condition
-1 Resource assigned to exactly one process (or none)

¢ Hold and wait condition
o Can request resource at any time

¢ No preemption condition
o Granted resources can not be forcibly taken away

¢ Circular wait condition
7 Must be cycle of processes waiting on each other

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 9]

Resource Graph

= Nodes:

¢ Processes: Circle

¢ Resources: Square
= Arcs:

¢ Resource A - Process 1: P1 holds A
(0

¢ Process 1 - Resource A: P1 waiting for A

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 10]

DeddlockiExample

Process # Required Resources
Process 1 A and B
Process 2 Band C
Process 3 Cand A

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 11]

DeadlockiExample

Events:
P1 requests A

B

(2)

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 12]

DeadlockiExample

Events:
P1 requests A
P2 requests B

B

(2)

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 13]

DeadlockiExample

Events:
P1 requests A
P2 requests B
P3 requests C

B

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 14]

DeddlockiExample

Events:
P1 requests A

B

P2 requests B
P3 requests C
P1 requests B

(notice example of hold and wait)

[slide 15]

[discussion section - ecs150 operating systems - winter quarter 2004]

DeddlockiExample

Events:
P1 requests A

B

P2 requests B
P3 requests C
P1 requests B
P2 requests C

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 16]

DeddlockiExample

Events:
P1 requests A
P2 requests B
P3 requests C
P1 requests B
P2 requests C
P3 requests A

B

(notice example of circular wait)

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 17]

Handling Deadlocks

= Possible responses:
¢ Ignore

¢ Detect (and recover)

¢ Avoid

¢ Prevent

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 18]

Eﬂ diing Deadlocks

= Possible responses:

¢ Ignore
- Are deadlocks such a bad problem?

¢ Detect (and recover)
0 Watch for deadlocks, fix when happens

¢ Avoid
- Make good decisions!

¢ Prevent
o Eliminate one condition required for deadlocks

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 19]

tghbre Deadlocks

= Why ignore deadlocks?
¢+ How often will deadlocks occur?
¢ How often will system crash anyway?

¢ Is deadlock detection, prevention, or avoidance
really cost effective?

= Ostrich Algorithm
¢ Ignore problem of deadlocks completely

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 20]

m- ction and Recovery

Method Detection Recovery
: Keep resource graph, Kill a process in the cycle
check for cycles until cycle is broken
Check how long process | Kill process that has
2 has been continuously | been continuously
blocked blocked for long time

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 21]

= Decide if resource should be granted
¢+ Want to keep system in a “safe” state
¢ Requires certain information in advance
¢ Great in theory, but often impractical

= Banker’s Algorithm for Multiple Resources
¢ Often discussed avoidance algorithm
¢ Rarely used in practice

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 22]

BankersrAlgorithm

= Tracks current state of system

= Prevents state from becoming unsafe

¢ A state is safe if there exists some sequence that
allows every process to run to completion

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 23]

BankersrAlgorithm

= State tracked by:

¢ 2 Process by Resource Matrices
7 Resources assigned
1 Resources still needed

¢ 3 Resource Vectors
o (E)xisting resources
o (P)ossessed resources
- (A)vailable resources

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 24]

BankersrAlgorithm

To check if initial state safe:

1. Find process whose needs are less than the
avallable resources
o If none exist, then state not safe (deadlock possible)

2. Assume process completes, and add its
resources as available

3. Repeat steps 1 and 2 until all processes are
terminated
o If possible, then initial state safe

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 25]

BankersrAlgorithm

still needed
A B C | D | E

tape drives| 3 | 0 | 1 1101]0 3]0]2]|6]|5 1

plotters (O |1 /1 (101 /1]1]0,1]3]3]0

printers |1 /0|1] 0]O0|O0|1T]O0 1|1 4] 2 2

cd-roms | 1 | O, O 1 00, 2]0, 001220

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 26]

BankersrAlgorithm

Process =D

still needed
A B C | D | E

tape drives| 3 | 0 | 1 110103]0]2]|6]|5 1

plotters (O |1 1101 /1] 1]0,1]3]3]0

printers |1 /0|1] 0]O0O0 | 1T]O0 1|1 4] 2 2

cd-roms | 1 | O, 0O 1T 00, 2]0 0012 |20

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 27]

BankersrAlgorithm

Process = A
still needed
A B|cC| B
tapedrives| 3 | 0 | 1 0] 1 0 3
plotters 0 | 1 1 0| 1 1 1
printers 1 0 | 1 o110 | 1 0
cd-roms 1 0 O O10 |2 0

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 28]

BankersrAlgorithm

Eventually, all will be able to run. Initial state = safe

still needed

B/ C B E
tape drives 0o | 1 0 0 3 216 | 2| 4
plotters 1 | 1 0 1 | 1 113] 2 1
printers 0 | 1 0 110 114 | 2| 2
cd-roms 00 0 2|0 Of2 | 0] 3

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 29]

Deddlock Prevention

" Impose restrictions that make deadlocks
structurally impossible

¢ Prevent at least one of four conditions required
for deadlock to occur

= How prevent deadlock?
¢ Prevent mutual exclusion?
¢ Prevent hold and wait condition?
¢ Prevent no preemption condition?
¢ Prevent circular wait condition?

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 30]

DeadlockiConditions

= Necessary Conditions:

¢ Mutual exclusion condition
-1 Resource assigned to exactly one process (or none)

¢ Hold and wait condition
o Can request resource at any time

¢ No preemption condition
o Granted resources can not be forcibly taken away

¢ Circular wait condition
7 Must be cycle of processes waiting on each other

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 31]

