Section 2.1

1 Describe an algorithm that determines the location of the first even integer in a list $a_{1}, a_{2}, \ldots, a_{n}$ of integers. (If no integer in the list is even, the output should be that the location is 0 .)

Solution

location $:=0$
for $i:=1$ to n
if $a_{i} \bmod 2=0$ then location $:=i$
2. Describe an algorithm that takes as input a positive integer n and gives as output the tens' digit of n.

Solution

$$
\begin{aligned}
& t:=n-100\left\lfloor\frac{n}{100}\right\rfloor\{t \text { is the number consisting of the tens' and units' digits of } n\} \\
& u:=t-10\left\lfloor\frac{t}{10}\right\rfloor\{u \text { is the units' digit of } t\} \\
& \text { answer }:=t-u .
\end{aligned}
$$

3. Describe an algorithm that takes as input a sequence of distinct integers $a_{1}, a_{2}, \ldots, a_{n}(n \geq 2)$ and determines if the integers are in increasing order.

Solution

```
output:= TRUE
for }i:=2\mathrm{ to }
if }\mp@subsup{a}{i-1}{}\geq\mp@subsup{a}{i}{}\mathrm{ then output := FALSE
```

4. Describe an algorithm that takes as input a list of integers $a_{1}, a_{2}, \ldots, a_{n}$ (where $n>2$) and determines if some a_{i} is equal to the average of an earlier entry in the list and a later entry in the list.

Solution

```
answer := FALSE
i:=2
while answer = FALSE and }i<n\mathrm{ do
begin
j:=1
while }j<i\mathrm{ and answer = FALSE { examine earlier entries in the list }
begin
k:=i+1
while k\leqn and answer = FALSE { examine later entries in the list }
if }\mp@subsup{a}{i}{}=\frac{\mp@subsup{a}{j}{}+\mp@subsup{a}{k}{}}{2}\mathrm{ then answer }:=\mathrm{ TRUE
end
end
```

