Section 2.2

1 Determine the complexity function that measures the number of print statements in an algorithm that takes a positive integer n and prints one 1 , two 2 s , three $3 \mathrm{~s}, \ldots, n n \mathrm{~s}$.

Solution

$$
f(n)=1+2+3+\cdots+n=\frac{n(n+1)}{2}=O\left(n^{2}\right)
$$

2. Suppose an algorithm takes a sequence of $n(\geq 2)$ integers and determines if it contains an integer that is a repeat of the first integer in the list. Find the complexity function for the:
(a) best case analysis,
(b) worst case analysis,
(c) average case analysis.

Solution

(a) The complexity function for the best case is $f(n)=1$. Making the second integer equal to the first will force the algorithm to terminate after only one comparison.
(b) The complexity function for the worst case is $f(n)=n$. Having no repeat of the first integer will force the algorithm to terminate after making all $n-1$ comparisons.
(c) The complexity function for the average case is $f(n)=n$. There might be a repeat of the first integer in any of positions 2 through n, or there may be not repeat. Thus there are n cases, with respective numbers of comparisons $1,2,3, \ldots, n-1, n-1$. The average of these numbers is

$$
\frac{1+2+3+\cdots+(n-1)+(n-1)}{n}=\frac{n(n-1) / 2}{n}=O(n)
$$

3. Find the complexity function for counting the number of print statements in the following algorithm:
for $i:=1$ to n
begin
for $j:=1$ to n
print "hello"
for $k:=1$ to n
print "hello"
end

Solution For each value of i, both the j-loop and k-loop are executed. Thus for each $i, n+n=2 n$ print statements are executed. Therefore the total number of print statements executed is $n \cdot 2 n=$ $2 n^{2}=O\left(n^{2}\right)$.
4. Find the complexity function for counting the number of print statements in the following algorithm:

```
for }i:=1\mathrm{ to }
begin
    for j:=1 to i
        print "hello"
    for }k:=i+1 to n
        print "hello"
end
```

Solution For each value of i, both the j-loop and k-loop are executed. Thus for each $i, i+j=n$ print statements are executed. Therefore the total number of print statements executed is $n \cdot n=O\left(n^{2}\right)$.

