Section 2.3

1. (a) Find the number of positive integer divisors of $642=2^{3} 3^{4}$.
(b) Find the sum of all positive integer divisors of 642.

Solution

(a) Each divisor must have the form $2^{i} 3^{j}$ where $0 \leq i \leq 3$ and $0 \leq j \leq 4$. Hence, there are $3 \cdot 4=12$ divisors of 642 .
(b) The sum of the divisors is

$$
\begin{align*}
\sum_{i=0}^{3} \sum_{j=0}^{4} 2^{i} 3^{j} & =2^{0} \sum_{j=0}^{4} 3^{j}+2^{1} \sum_{j=0}^{4} 3^{j}+2^{2} \sum_{j=0}^{4} 3^{j}+2^{3} \sum_{j=0}^{4} 3^{j} \tag{1}\\
& =\left(2^{0}+2^{1}+2^{2}+2^{3}\right) 121 \tag{2}\\
& =1815 \tag{3}
\end{align*}
$$

2. Find a formula for the sum of all divisors of integers of the form $2^{m} 3^{n}(m, n \geq 0)$.

Solution Each divisor must have the form $2^{i} 3^{j}$ where $0 \leq i \leq m$ and $0 \leq j \leq n$. Hence, the sum of the divisors is

$$
\begin{align*}
\sum_{i=0}^{m} \sum_{j=0}^{n} 2^{i} 3^{j} & =2^{0} \sum_{j=0}^{n} 3^{j}+2^{1} \sum_{j=0}^{n} 3^{j}+\cdots+2^{m} \sum_{j=0}^{n} 3^{j} \tag{4}\\
& =\left(2^{0}+2^{1}+2^{2}+\cdots+2^{m}\right) \sum_{j=0}^{n} 3^{j} \tag{5}\\
& =\left(2^{m+1}-1\right) \frac{3^{n+1}-1}{2} \tag{6}
\end{align*}
$$

$\star 3$. (Problem A1 from the 1989 William Lowell Putnam Mathematics Competition.) Consider the following sequence of integers (in base 10): 101, 10101, 1010101, 101010101, 10101010101, ... Prove that 101 is the only number in this sequence that is prime. (Hint: Use place value to write each number in terms of the sum of its digits; for example, $a b c d e=a 10^{4}+b 10^{3}+c 10^{2}+d 10+e$. Then examine how the sum might be factored.)

Solution It is easily checked that 101 is prime. Given any number of the form $10101 \ldots 01$ greater than 101 , there is an integer $n \geq 2$ such that

$$
\begin{align*}
10101 \ldots 01 & =10^{2 n}+10^{2 n-2}+\cdots+10^{4}+10^{2}+1 \tag{7}\\
& =\frac{10^{2 n+2}-1}{99} \tag{8}\\
& =\frac{\left(10^{n+1}\right)^{2}-1}{99} \tag{9}\\
& =\frac{\left(10^{n+1}-1\right)\left(10^{n+1}+1\right)}{99} \tag{10}\\
& =\frac{a_{n}\left(10^{n+1}+1\right)}{11} \tag{11}
\end{align*}
$$

where a_{n} is the integer that is a string of $n+11 \mathrm{~s}$. If n is odd, then $11 \mid a_{n}$. If n is even, then $11 \mid\left(10^{n+1}+1\right)$. In either case, $10101 \ldots 01$ is a product of two integers, each greater than 1 . Therefore 10101... 01 is not prime if $n>1$.

