Homework 1 Cheat Sheet

Friday, April $6^{\text {th }}, 2007$

Truth Tables												
Logic Operators								Bit Operations				
p	q	$\neg q$	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$	x	y	$x \wedge y$	$x \vee y$	$x \oplus y$
T	T	F	T	T	F	T	T	1	1	1	1	0
T	F	T	F	T	T	F	F	1	0	0	1	1
F	T	-	F	T	T	T	F	0	1	0	1	1
F	F	-	F	F	F	T	T	0	0	0	0	0

Simple Equivalences				
Identity:	Domination:	Idempotent:	Negation:	Implication:
$p \wedge T \Leftrightarrow p$	$p \vee T \Leftrightarrow T$	$p \vee p \Leftrightarrow p$	$\neg(\neg p) \Leftrightarrow p$	$(p \rightarrow q) \Leftrightarrow(\neg p \vee q)$
$p \vee F \Leftrightarrow p$	$p \wedge F \Leftrightarrow F$	$p \wedge p \Leftrightarrow p$	$p \vee \neg p \Leftrightarrow T$	
			$p \wedge \neg p \Leftrightarrow F$	

Equivalence Laws
Commutative:
$p \vee q \Leftrightarrow q \vee p$
$p \wedge q \Leftrightarrow q \wedge p$

Associative:

$(p \vee q) \vee r \Leftrightarrow p \vee(q \vee r)$
De Morgan's:

$$
\begin{aligned}
& \neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q \\
& \neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q \\
& \hline
\end{aligned}
$$

Distributive:

$$
p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)
$$

$$
p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)
$$

\mathbb{Z} : Integers $(\ldots,-1,0,1, \ldots)$
$\mathbb{N}:$ Natural Numbers $(1,2,3, \ldots)$
Q: Rational Numbers ($\frac{p}{q}$ where $p, q \in \mathbb{Z}, q \neq 0$)
\mathbb{R} : Real Numbers (rattional \& irrational numbers)

	Quantifications				
Statement:	$\forall \boldsymbol{x} \forall \boldsymbol{y} \boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}) \Leftrightarrow \forall \boldsymbol{y} \forall \boldsymbol{x} \boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y})$				
True if:	$P(x, y)$ is true for every pair x, y.				
False if:	There exists a pair x, y for which $P(x, y)$ is				
false.		$	$	Statement:	$\forall \boldsymbol{x} \exists \boldsymbol{y} \boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y})$
---:	:---				
True if:	For every x there exists a y for which $P(x, y)$ is true.				
False if:	There exists an x such that $P(x, y)$ is false for				
every y.					

