DISCUSSION FRIDAY APRIL 13TH 2007

Sophie Engle ECS20: Discrete Mathematics

Book available at bookstore!

Sixth Edition:

\$140.40 at bookstore

New submission guidelines!

Write Legibly.

No fringe.

Staple pages.

Homework 1 graded

- Solutions posted on <u>my.ucdavis.edu</u>
- View grades on <u>my.ucdavis.edu</u>

4

5

Homework 2 assigned

- 38 problems total
 - Some problems were removed! Be sure to double check the main course website.
- Due Monday, April 16 at 4:00pm

Extra Exercises posted on TA website for sections 2.1, 2.2, 2.3, and 2.4

- To get homework questions answered:
 - Submit questions to the newsgroup.
 - Information on how to access newsgroup is on the TA website (linked from the main course website).
 - There is a web-based reader!
 - Questions submitted by Thursday at 4:00pm may be included in Friday's discussion.
 - Otherwise, I will answer the question on the newsgroup.
 - Questions posted after 4:00pm Sunday may not get answered in time.
 - Please do not email homework questions.

Tips and hints for homework 2.

Symmetric Difference

- □ $A \oplus B$: the set of those elements in either A or B, but not in both A and B.
 - How can we express this with unions and intersections?
 - $\blacksquare A \oplus B = (A \cup B) (A \cap B)$

Union and Intersection

$$A_1 \bigcup A_2 \bigcup \cdots \bigcup A_n$$

can be written as:
$$\bigcup_{i=1}^n A_i$$

 $A_1 \cap A_2 \cap \cdots \cap A_n$ can be written as: n

Union and Intersection

$$\begin{aligned} A_i &= \{1, 2, \dots, i\} \\ \bigcup_{i=2}^{4} A_i &= A_2 \bigcup A_3 \bigcup A_4 \\ &= \{1, 2\} \bigcup \{1, 2, 3\} \bigcup \{1, 2, 3, 4\} \\ &= \{1, 2, 3, 4\} \end{aligned}$$

$$\bigcap_{i=2}^{4} A_i = A_2 \cap A_3 \cap A_4$$
$$= \{1, 2\} \cap \{1, 2, 3\} \cap \{1, 2, 3, 4\}$$
$$= \{1, 2\}$$

$$\bigcup_{i=2}^{\infty} A_i = ?$$

$$\bigcap_{i=2}^{\infty} A_i = ?$$

Union and Intersection

$$\begin{aligned} A_i &= \{1, 2, \dots, i\} \\ \bigcup_{i=2}^{4} A_i &= A_2 \bigcup A_3 \bigcup A_4 \\ &= \{1, 2\} \bigcup \{1, 2, 3\} \bigcup \{1, 2, 3, 4\} \\ &= \{1, 2, 3, 4\} \end{aligned}$$

$$\bigcap_{i=2}^{4} A_i = A_2 \cap A_3 \cap A_4$$
$$= \{1, 2\} \cap \{1, 2, 3\} \cap \{1, 2, 3, 4\}$$
$$= \{1, 2\}$$

$$\bigcup_{i=2}^{\infty} A_i = \{1, 2, 3, ...\} = \mathbb{Z}^+$$

$$\bigcap_{i=2}^{\infty} A_i = \{1\}$$

floorAssigns to the real number x the largest $\lfloor x \rfloor$ integer that is less than or equal to x.

Assigns to the real number x the smallest ceil integer that is greater than or equal to x.

floorAssigns to the real number x the largest $\lfloor x \rfloor$ integer that is less than or equal to x.

Assigns to the real number x the smallest ceil integer that is greater than or equal to x.

floorAssigns to the real number x the largest $\lfloor x \rfloor$ integer that is less than or equal to x.

Assigns to the real number x the smallest ceil integer that is greater than or equal to x.

15

1:49 PM

floorAssigns to the real number x the largest $\lfloor x \rfloor$ integer that is less than or equal to x.

Assigns to the real number x the smallest ceil integer that is greater than or equal to x.

floorAssigns to the real number x the largest $\lfloor x \rfloor$ integer that is less than or equal to x.

Assigns to the real number x the smallest ceil integer that is greater than or equal to x.

1:49 PM

Useful Properties

- **Does** $\lfloor x + n \rfloor = \lfloor x \rfloor + n$?
 - TRUE! See proof on page 144.
 - Same for $\lceil x + n \rceil = \lceil x \rceil + n$.

■ Does
$$\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$$

■ FALSE! $\lceil 0.5 + 0.5 \rceil = \lceil x \rceil + \lceil y \rceil$
 $\lceil 1 \rceil = \lceil 0.5 \rceil + \lceil 0.5 \rceil$
 $1 = 1 + 1$
 $1 \neq 2$

More properties in book.

Proving Equivalence (Example 1)

19

Let *f* be a function from the set *A* to the set *B*. Let *S* and *T* be subsets of *A*. Show that $f(S \cup T) = f(S) \cup f(T)$ Step 1: Show that $f(S \cup T) \subseteq f(S) \cup f(T)$ Step 2: Show that $f(S) \cup f(T) \subseteq f(S \cup T)$

Why does this work?

• If $A \subseteq B$ and $B \subseteq A$ then A = B.

Proving Equivalence (Example 1)

- 20
- $\square \operatorname{Proof} \operatorname{Step} \mathbf{1} : f(S \cup T) \subseteq f(S) \cup f(T)$
 - Let $y \in f(S \cup T)$.
 - Then there exists a x ∈ S ∪ T such that f(x) = y.
 If x ∈ S then f(x) ∈ f(S) ⊆ f(S) ∪ f(T).
 If x ∈ T then f(x) ∈ f(T) ⊆ f(S) ∪ f(T).
 Therefore f(x) ∈ f(S) ∪ f(T) for all x ∈ S ∪ T.
 This gives us f(S ∪ T) ⊆ f(S) ∪ f(T).

Proving Equivalence (Example 1)

- □ Proof Step 2: $f(S) \cup f(T) \subseteq f(S \cup T)$
 - Let $y \in f(S) \cup f(T)$.
 - Then $y \in f(S)$ or $y \in f(T)$.
 - If $y \in f(S)$ then there exists a $x \in S \subseteq S \cup T$ such that f(x) = y.
 - If $y \in f(T)$ then there exists a $x \in T \subseteq S \cup T$ such that f(x) = y.
 - □ If there exists such a f(x) = y then $f(x) \in f(S) \cup f(T)$.
 - We also know that $x \subseteq S \cup T$.
 - Therefore $f(x) \subseteq f(S \cup T)$ for all $x \subseteq S \cup T$.
 - This gives $us f(S) \cup f(T) \subseteq f(S \cup T)$.

Proving Equivalence (Example 2)

22

Let *f* be a function from the set *A* to the set *B*. Let *S* be a subset of *B*.

$$f: A \to B$$
$$S \subset B$$

Show that:
$$f^{-1}(\overline{S}) = \overline{f^{-1}(S)}$$

24

Proving Equivalence (Example 2)

$$f^{-1}(\overline{S}) = f^{-1}(S)$$

$$f^{-1}(\overline{S}) = \{ x \in A \mid f(x) \notin S \}$$

= $\overline{\{ x \in A \mid f(x) \in S \}}$
= $\overline{f^{-1}(S)}$

Notes and solutions from homework 1.

Converse and contrapositive

Example:

I go to the beach whenever it is a sunny day.
result (q)
condition (p)

Converse and contrapositive

Example:

I go to the beach whenever it is a sunny day.
result (q)
condition (p)

Whenever it is a sunny day, I go to the beach.

Same meaning, get $p \rightarrow q$.

30

1:49 PM

Converse and contrapositive

Example:

I don't go to the beach whenever it isn't a sunny day.

Inverse, get
$$\neg p \rightarrow \neg q$$
.

Converse and contrapositive

Example:

It is a sunny day whenever I go to the beach.

• Converse, get $q \rightarrow p$.

32

1:49 PM

Converse and contrapositive

Example:

It isn't a sunny day whenever I don't go to the beach.

• Contrapositive, get $\neg q \rightarrow \neg p$.

Make standard truth tables!

р	q	r
Т	Т	Т
Т	Т	F
Т	F	Т
Т	F	F
F	Т	Т
F	Т	F
F	F	Т
F	F	F

33

Negation

- When distributing a in a proposition, you must:
 - Negate every variable:
 - p becomes ¬p
 - ¬p becomes p
 - Negate every operator:
 - V becomes
 - A becomes V
 - Negate every quantifier:
 - $\forall x (\dots)$ becomes $\exists x \neg (\dots)$
 - $\exists x (\dots)$ becomes $\forall x \neg (\dots)$

Negation Example

$$\neg \exists x \ [\forall y \ P(x,y) \land \forall z \ [\neg Q(x,y) \lor \exists y \ R(x,y,z) \]]$$

$$\downarrow \downarrow \downarrow$$

$$\forall x \ \neg [\forall y \ P(x,y) \land \forall z \ [\neg Q(x,y) \lor \exists y \ R(x,y,z) \]]$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$

$$\forall x \ [\exists y \ \neg P(x,y) \lor \exists z \ \neg [\neg Q(x,y) \lor \exists y \ R(x,y,z) \]]$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow$$