DISCUSSION FRIDAY APRIL $13^{\text {TH }} 2007$

Sophie Engle
ECS20: Discrete Mathematics

Announcements

\square Book available at bookstore!

Sixth Edition:

- \$140.40 at bookstore

Announcements

\square New submission guidelines!

Write Legibly!

Write Legibly.

No fringe.

Staple pages.

Announcements

\square Homework 1 graded
\square Solutions posted on my.ucdavis.edu
\square View grades on my.ucdavis.edu

Announcements

\square Homework 2 assigned
-38 problems total

- Some problems were removed! Be sure to double check the main course website.
- Due Monday, April 16 at 4:00pm
\square Extra Exercises posted on TA website for sections 2.1, 2.2, 2.3, and 2.4

Announcements

\square To get homework questions answered:
\square Submit questions to the newsgroup.

- Information on how to access newsgroup is on the TA website (linked from the main course website).
- There is a web-based reader!
\square Questions submitted by Thursday at 4:00pm may be included in Friday's discussion.
- Otherwise, I will answer the question on the newsgroup.
- Questions posted after 4:00pm Sunday may not get answered in time.
\square Please do not email homework questions.

Homework 2 Notes

Tips and hints for homework 2.

Symmetric Difference

$\square A \oplus B$: the set of those elements in either A or B, but not in both A and B.
\square How can we express this with unions and intersections?
$\square A \oplus B=(A \cup B)-(A \cap B)$

Union and Intersection

$A_{1} \cup A_{2} \cup \cdots \cup A_{n}$

 can be written as:
$A_{1} \cap A_{2} \cap \cdots \cap A_{n}$

 can be written as:$$
\bigcap_{i=1}^{n} A_{i}
$$

Union and Intersection

$$
\begin{aligned}
& A_{i}= \\
& \begin{aligned}
\bigcup_{i=2}^{4} A_{i} & =A_{2} \cup A_{3} \cup A_{4} \\
& =\{1,2\} \cup\{1,2,3\} \cup\{1,2,3,4\} \\
& =\{1,2,3,4\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\bigcap_{i=2}^{4} A_{i} & =A_{2} \cap A_{3} \cap A_{4} \\
& =\{1,2\} \cap\{1,2,3\} \cap\{1,2,3,4\} \\
& =\{1,2\}
\end{aligned}
$$

$$
\bigcup_{i=2}^{\infty} A_{i}=?
$$

$$
\bigcap_{i=2}^{\infty} A_{i}=?
$$

Union and Intersection

$$
\begin{aligned}
& A_{i}=\{1,2, \ldots, i\} \\
& \begin{aligned}
\bigcup_{i=2}^{4} A_{i} & =A_{2} \cup A_{3} \cup A_{4} \\
& =\{1,2\} \cup\{1,2,3\} \cup\{1,2,3,4\} \\
& =\{1,2,3,4\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\bigcap_{i=2}^{4} A_{i} & =A_{2} \cap A_{3} \cap A_{4} \\
& =\{1,2\} \cap\{1,2,3\} \cap\{1,2,3,4\} \\
& =\{1,2\}
\end{aligned}
$$

$$
\bigcup_{i=2}^{\infty} A_{i}=\{1,2,3, \ldots\}=\mathbf{Z}^{+}
$$

$$
\bigcap_{i=2}^{\infty} A_{i}=\{1\}
$$

Floor and Ceiling Functions

floor Assigns to the real number x the largest
 $\lfloor x\rfloor$ integer that is less than or equal to x.

Assigns to the real number x the smallest ceil integer that is greater than or equal to x. $\lceil x\rceil$

Floor and Ceiling Functions

> | floor | Assigns to the real number x the largest |
| :---: | :--- |
| $\lfloor x\rfloor$ | integer that is less than or equal to x. |

Assigns to the real number x the smallest ceil integer that is greater than or equal to x. $\lceil x\rceil$

Floor and Ceiling Functions

> | floor | Assigns to the real number x the largest |
| :---: | :--- |
| $\lfloor x\rfloor$ | integer that is less than or equal to x. |

$\begin{array}{cl}\begin{array}{c}\text { Assigns to the real number } x \text { the smallest } \\ \text { integer that is greater than or equal to } x .\end{array} & \left.\begin{array}{l}\text { ceil } \\ \end{array}\right)\end{array}$

Floor and Ceiling Functions

> | floor | Assigns to the real number x the largest |
| :---: | :--- |
| $\lfloor x\rfloor$ | integer that is less than or equal to x. |

> Assigns to the real number x the smallest ceil integer that is greater than or equal to x. $\lceil x\rceil$

Floor and Ceiling Functions

> | floor | Assigns to the real number x the largest |
| :---: | :--- |
| $\lfloor x\rfloor$ | integer that is less than or equal to x. |

Assigns to the real number x the smallest ceil integer that is greater than or equal to x. $\lceil x\rceil$

Floor and Ceiling Functions

Floor and Ceiling Functions

\square Useful Properties
\square Does $\lfloor x+n\rfloor=\lfloor x\rfloor+n$?

- TRUE! See proof on page 144.
\square Same for $\lceil x+n\rceil=\lceil x\rceil+n$.
\square Does $\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$?
\square FALSE! $\lceil 0.5+0.5\rceil=\lceil x\rceil+\lceil y\rceil$

$$
\begin{aligned}
\lceil 1\rceil & =\lceil 0.5\rceil+\lceil 0.5\rceil \\
1 & =1+1 \\
1 & \neq 2
\end{aligned}
$$

\square More properties in book.

Proving Equivalence (Example 1)

Let f be a function from the set A to the set B.
Let S and T be subsets of A.

- Show that $f(S \cup T)=f(S) \cup f(T)$
- Step 1: Show that $f(S \cup T) \subseteq f(S) \cup f(T)$
- Step 2: Show that $f(S) \cup f(T) \subseteq f(S \cup T)$
\square Why does this work?
- If $A \subseteq B$ and $B \subseteq A$ then $A=B$.

Proving Equivalence (Example 1)

\square Proof Step 1: $f(S \cup T) \subseteq f(S) \cup f(T)$
\square Let $y \in f(S \cup T)$.

- Then there exists a $x \in S \cup T$ such that $f(x)=y$.

■ If $x \in S$ then $f(x) \in f(S) \subseteq f(S) \cup f(T)$.
■ If $x \in T$ then $f(x) \in f(T) \subseteq f(S) \cup f(T)$.

- Therefore $f(x) \in f(S) \cup f(T)$ for all $x \in S \cup T$.
\square This gives us $f(S \cup T) \subseteq f(S) \cup f(T)$.

Proving Equivalence (Example 1)

\square Proof Step 2: $f(S) \cup f(T) \subseteq f(S \cup T)$

- Let $y \in f(S) \cup f(T)$.
\square Then $y \in f(S)$ or $y \in f(T)$.
■ If $y \in f(S)$ then there exists a $x \in S \subseteq S \cup T$ such that $f(x)=y$.
■ If $y \in f(T)$ then there exists a $x \in T \subseteq S \cup T$ such that $f(x)=y$.
- If there exists such a $f(x)=y$ then $f(x) \in f(S) \cup f(T)$.
\square We also know that $x \subseteq S \cup T$.
- Therefore $f(x) \subseteq f(S \cup T)$ for all $x \subseteq S \cup T$.
- This gives us $f(S) \cup f(T) \subseteq f(S \cup T)$.

Proving Equivalence (Example 2)

Let f be a function from the set A to the set B.
Let S be a subset of B.
$f: A \rightarrow B$
$S \subseteq B$

- Show that: $f^{-1}(\bar{S})=\overline{f^{-1}(S)}$

Proving Equivalence (Example 2)

$$
f^{-1}(\bar{S})=\overline{f^{-1}(S)}
$$

Proving Equivalence (Example 2)

$$
f^{-1}(\bar{S})=\overline{f^{-1}(S)}
$$

Proving Equivalence (Example 2)

$$
f^{-1}(\bar{S})=\overline{f^{-1}(S)}
$$

Proving Equivalence (Example 2)

$$
f^{-1}(\bar{S})=\overline{f^{-1}(S)}
$$

$$
\begin{aligned}
f^{-1}(\bar{S}) & =\{x \in A \mid f(x) \notin S\} \\
& =\overline{\{x \in A \mid f(x) \in S\}} \\
& =\overline{f^{-1}(S)}
\end{aligned}
$$

Homework 1 Notes

Notes and solutions from homework 1.

Homework 1 Notes

\square Converse and contrapositive

Implication: p	$\rightarrow q$
Inverse: $\neg p$	$\rightarrow \neg q$

| Converse: | q |
| ---: | :--- |$\rightarrow p$

\square Example:

- I go to the beach whenever it is a sunny day.
result (q)
condition (p)

Homework 1 Notes

\square Converse and contrapositive

Implication: p	$\rightarrow q$
Inverse: $\neg p$	$\rightarrow \neg q$

Converse:	
Contrapositive:	$\neg q$

\square Example:
-I go to the beach whenever it is a sunny day.
result (q)
condition (p)
\square Whenever it is a sunny day, I go to the beach.
$■$ Same meaning, get $p \rightarrow q$.

Homework 1 Notes

\square Converse and contrapositive

Implication: p	$\rightarrow q$
Inverse: $\neg p$	$\rightarrow \neg q$

Converse: $\quad q$	$\rightarrow p$
Contrapositive: $\neg q$	$\rightarrow \neg p$

\square Example:
-I go to the beach whenever it is a sunny day.
result (q)
condition (p)
$\square I$ don't go to the beach whenever it isn't a sunny day.
$■$ Inverse, get $\neg p \rightarrow \neg q$.

Homework 1 Notes

\square Converse and contrapositive

Implication: p	$\rightarrow q$
Inverse: $\neg p$	$\rightarrow \neg q$

Converse:	
Contrapositive:	$\neg q$

\square Example:
-I go to the beach whenever it is a sunny day.
result (q)
condition (p)
\square It is a sunny day whenever I go to the beach.
$■$ Converse, get $q \rightarrow p$.

Homework 1 Notes

\square Converse and contrapositive

Implication: p	$\rightarrow q$
Inverse: $\neg p$	$\rightarrow \neg q$

Converse: $\quad q$	$\rightarrow p$
Contrapositive: $\neg q$	$\rightarrow \neg p$

\square Example:
-I go to the beach whenever it is a sunny day.
result (q)
condition (p)

- It isn't a sunny day whenever I don't go to the beach.
$■$ Contrapositive, get $\neg q \rightarrow \neg p$.

Homework 1 Notes

\square Make standard truth tables!

p	q	r
T	T	T
T	T	F
T	F	T
T	F	F
F	T	T
F	T	F
F	F	T
F	F	F

Homework 1 Notes

\square Negation
\square When distributing $\mathrm{a} \neg$ in a proposition, you must:

- Negate every variable:
- p becomes $\neg p$
$\square \neg p$ becomes p
- Negate every operator:
- \vee becomes \wedge
- \wedge becomes \vee
- Negate every quantifier:
- $\forall x(\cdots)$ becomes $\exists x \neg(\cdots)$
$\square \exists x(\cdots)$ becomes $\forall x \neg(\cdots)$

Homework 1 Notes

\square Negation Example

$$
\begin{aligned}
& \neg \exists x[\forall y \mathrm{P}(x, y) \wedge \forall z[\neg \mathrm{Q}(x, y) \vee \exists y \mathrm{R}(x, y, z)]] \\
& \downarrow \downarrow \\
& \forall x \neg\left[\begin{array}{lllllll}
\forall y & \mathrm{P}(x, y) & \wedge & \forall z & {[\mathrm{Q}(x, y) \vee} & \exists y & \mathrm{R}(x, y, z)]
\end{array}\right] \\
& \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
& \forall x[\exists y \neg \mathrm{P}(x, y) \vee \exists z \neg[\neg \mathrm{Q}(x, y) \vee \exists y \quad \mathrm{R}(x, y, z)]] \\
& \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
& \forall x[\exists y \neg \mathrm{P}(x, y) \vee \exists z[\mathrm{Q}(x, y) \wedge \forall y \neg \mathrm{R}(x, y, z)]]
\end{aligned}
$$

