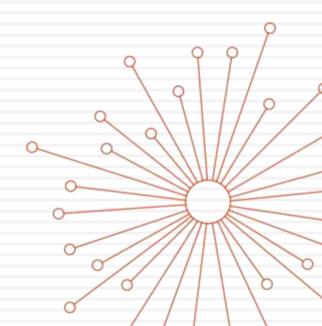
DISCUSSION #3 FRIDAY APRIL 18TH 2007

Sophie Engle ECS20: Discrete Mathematics

² Preliminary Survey Results

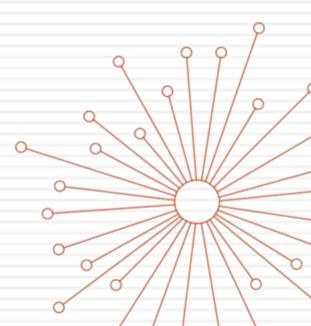
Survey Located At:

http://www.surveymonkey.com/s.asp?u=665323704735



³ Homework #3

Due Wednesday April 25th.



Homework #3

- Due date now on Wednesday at 4:00pm
- 31 questions total
- Covers six sections total
 - 2.3: Functions
 - 2.4: Sequences and Summations
 - 3.4: Integers and Division
 - 3.5: Primes and Greatest Common Divisors
 - 3.6: Integers and Algorithms
 - 3.7: Applications of Number Theory

Show versus Prove

- Show:
 - Informal
 - Explanation
 - Diagrams

□ Prove:

- Formal
- Based on "facts"
- Uses rules of inference
- Many methods:
 - By Construction
 - By Contraposition
 - By Contradiction
 - By Counterexample

6 Homework #3

Section 2.3 hints and examples.

Function Notation

- $\Box f: A \to B$
 - Function *f* has:
 domain *A* codomain *B* For *f*(*a*) = *b*:
 input *a* ∈ *A*
 - output $b \in B$
 - One input variable

- $\Box f: A \times B \to C$
 - **\square** Function f has:
 - domain *A* × *B*
 - codomain C
 - For f(a, b) = c:
 - input $a \in A$
 - input $b \in B$
 - output $c \in C$
 - Two input variables

Function Notation

8

■
$$f(m, n) = m + n$$

■ Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$:
■ $f(1, 2) = 1 + 2 = 3$
■ $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
■ Let $m \in \mathbb{Z}$ and $n \in \mathbb{N}$:
■ $f(-4, 1) = -4 + 1 = -3$
■ $f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Z}$
■ Let $m \in \mathbb{Z}$ and $n \in \mathbb{R}$:
■ $f(2, 0.15) = 2 + 0.15 = 2.15$
■ $f: \mathbb{Z} \times \mathbb{R} \to \mathbb{R}$

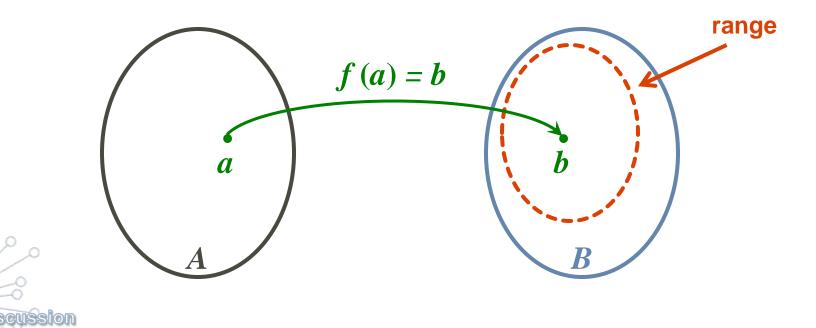
ECS20 Discussion

Onto / Surjective

 \square A function *f*: *A* to *B* is onto iff:

• For every $b \in B$ there is an $a \in A$ with f(a) = b $\Box \forall b \exists a (f(a) = b)$

The codomain is equal to the range



Onto / Surjective

10

□ Determine if the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto:

$$\Box f(m, n) = m + n$$

- Onto!
- For every $p \in \mathbb{Z}$ can we find a pair (m, n) such that m + n = p?

• Let
$$m = 1$$
, $n = p - 1$,

$$f(m, n) = m^2 + n^2$$

Not onto

• There is no pair (m, n) such that $m^2 + n^2 = -1$.

11 Homework #3

Section 2.4 hints and examples.

Summation

12

Notation:
$$\sum_{j=m}^{n} a_{j} = a_{m} + a_{m+1} + \dots + a_{n}$$

■ Examples: $\sum_{k=1}^{5} (k+1) = (1+1) + (2+1) + (3+1) + (4+1) + (5+1)$ = (2) + (3) + (4) + (5) + (6) = 20

$$S = \{2,4,6,8\}$$

$$\sum_{j \in S} j = 2 + 4 + 6 + 8 = 20$$

(work out on board)

Double Summation

13

ECS20 Discussion

Example: evaluate inner sum first $\sum_{i=1}^{2} \sum_{j=1}^{3} i + j = \sum_{i=1}^{2} \left(\sum_{j=1}^{3} i + j \right)$ $=\sum^{2} \left((i+1) + (i+2) + (i+3) \right)$ $=\sum_{i=1}^{2}(3i+6)$ $=(3\cdot 1+6)+(3\cdot 2+6)$ =3+6+6+6= 21

(work out on board)

Products

Notation:
$$\prod_{j=m}^{n} a_j = a_m \times a_{m+1} \times \cdots \times a_n$$

Examples:

ECS20 Discussion

$$\prod_{i=0}^{10} i = 0 \times 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10$$

= 0
$$\prod_{i=1}^{100} (-1)^{i} = (-1)^{1} \times (-1)^{2} \times \dots \times (-1)^{99} \times (-1)^{100}$$

= -1 \times 1 \times \dots -1 \times 1
= 1
(work

(work out on board)

15 Homework #3

Section 3.4 hints and examples.

Number Theory Motivation

What does it deal with?

- Studies properties and relationships of specific classes of numbers
- Most commonly studied classes of numbers:
 - Positive Integers
 - Primes
- What is this stuff good for?
 - Number theory used in cryptography
 - Basis for RSA public-key system
 - Integers often used in programming
 - Array indices

ECS20 Discus

 \Box If $a, b \in \mathbb{Z}$ with $a \neq 0$:

 $\square a \mid b$ if there exists a k such that $a \mid b = b$.

#7. Show that if a, b, and c are integers with c ≠ 0, such that ac | bc, then a | b.
If ac | bc, then there is an integer k such that: ack = bc

$$\frac{1}{c}(ack = bc)$$

$$ak = b$$

Therefore, we can state that $a \mid b$.

#21. Show that if:

 \square *n* | *m*, where *n*, *m* are positive integers > 1, and

 $\square a \equiv b \pmod{m}$, where *a* and *b* are integers

Then:

18

$$\square a \equiv b \pmod{n}$$

Since $n \mid m$, we know there exists an integer *i* such that $n \mid i = m$ (by definition 1).

19

#21. Show that if:

 \square *n* | *m*, where *n*, *m* are positive integers > 1, and

 $\square a \equiv b \pmod{m}$, where *a* and *b* are integers

Then:

 $\square a \equiv b \pmod{n}$

Since $a \equiv b \pmod{m}$, we know that there exists an integer a = b + j m (by theorem 1).

20

#21. Show that if:

n | *m*, where *n*, *m* are positive integers > 1, and *a* = *b* (mod *m*), where *a* and *b* are integers
Then:

a = b + jm a = b + jm = b + jni = b + (ji)n = b + kn = b (mod n)

²¹ Homework #3

Section 3.5 hints and examples.

Euler ϕ -function

 $\phi(n) = \#$ of positive integers $\leq n$ that are relatively prime to *n*

$$\phi(4) gcd(4,4) = 4 gcd(3,4) = 1 gcd(2,4) = 2 gcd(1,4) = 1 \phi(4) = 2$$

22

ECS20 Discuss

- - \square gcd(1, 10) = 1
 - \square gcd(3, 10) = 1
 - \square gcd(7, 10) = 1
 - □ gcd(9, 10) = 1
 - **□ (** 10) = 4

23 Homework #3

Section 3.6 hints and examples.

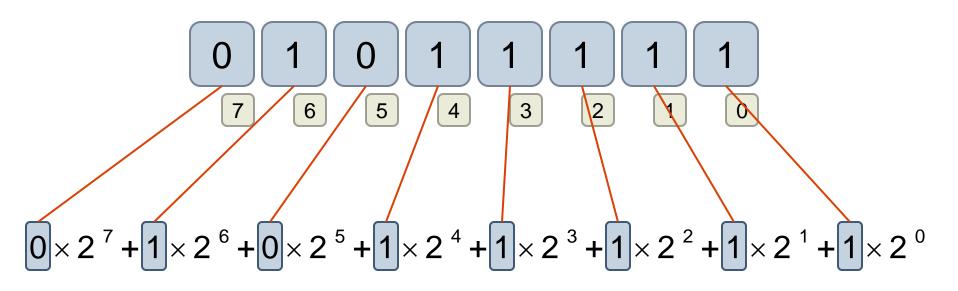
Number Conversion Motivation

Binary:

- Low-level language of computers
- Easy to represent in electrical systems ("on" versus "off")
- Can implement Boolean logic
- Octal:
 - File permissions in Unix often use an octal representation
- Decimal:
 - Number representation used in most modern languages
- Hexadecimal:
 - Used by HTML/CSS to represent colors
 - Character codes often represented in hexadecimal

25

□ (0101 1111)₂ =



26

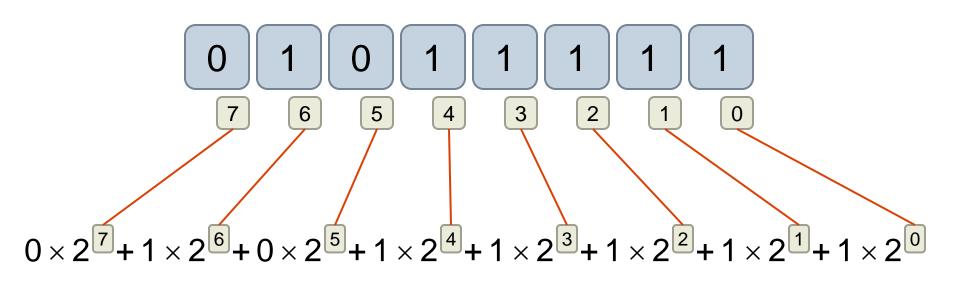
\Box (0101 1111)₂ =

$$0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

"base"
binary = base 2

ECS20 Discussion

□ (0101 1111)₂ =



0 999
8/1200
ECS20 Discussion

27

position

28

ECS20 Discussion

□ (0101 1111)₂ =

 $0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$

 $2^6 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 64 + 16 + 8 + 4 + 2 + 1 = 95$

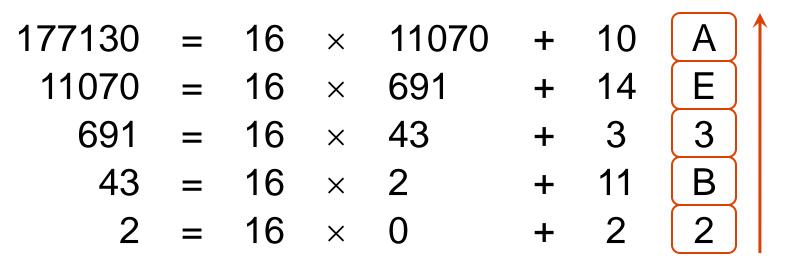
Hexadecimal Expansion

29

 $\begin{array}{c} 177130 = (?)_{16} \\ 177130 \div 16 = 11070.625 \\ 177130 = 16 \times 11070 + 10 \\ \hline 11070 = 16 \times 691 + 14 \end{array}$

Hexadecimal Expansion

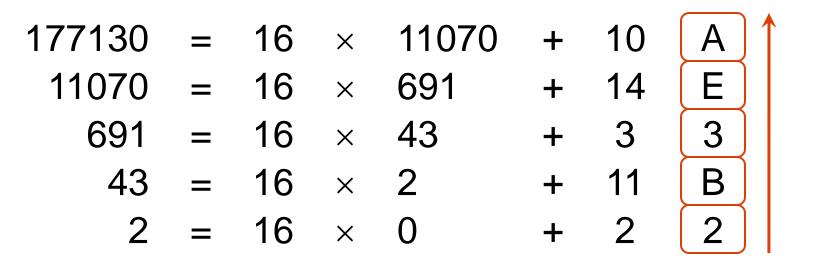
□ 177130 = (?)₁₆



2 B 3 E A

Hexadecimal Expansion

□ 177130 = (?)16



(2B3EA)₁₆

³² Homework #3

Section 3.7 hints and examples.

Examples

See PDF example for:

- Euclidean Algorithm
- Greatest Common Divisor
- Modular Inverses

Fermat's Little Theorem

- □ Show that $2^{340} \equiv 1 \pmod{11}$:
 - **By Fermat's Little Theorem:** $a^{10} \equiv 1 \pmod{11}$
 - We can rewrite $2^{340} = (2^{10})^{34}$
 - Therefore we get:

$$2^{340} = (2^{10})^{34}$$

= (1)³⁴ (mod 11)
= 1(mod 11)

