DISCUSSION \#3 FRIDAY APRIL 18TH 2007

Sophie Engle
ECS20: Discrete Mathematics

Preliminary Survey Results

Survey Located At:

http://www.surveymonkey.com/s.asp?u=665323704735

3

Homework \#3

Due Wednesday April 25th.

Homework \#3

\square Due date now on Wednesday at 4:00pm
$\square 31$ questions total
\square Covers six sections total
-2.3: Functions
-2.4: Sequences and Summations
\square 3.4: Integers and Division
\square 3.5: Primes and Greatest Common Divisors
\square 3.6: Integers and Algorithms
\square 3.7: Applications of Number Theory

Show versus Prove

\square Show:

- Informal
\square Explanation
\square Diagrams
\square Prove:
\square Formal
- Based on "facts"
\square Uses rules of inference
\square Many methods:
- By Construction
- By Contraposition
- By Contradiction
- By Counterexample

Homework \#3

Section 2.3 hints and examples.

Function Notation

$\square f: A \rightarrow B$
\square Function f has:

- domain A
- codomain B
\square For $f(a)=b$:
■ input $a \in A$
- output $b \in B$
\square One input variable
$\square f: A \times B \rightarrow C$
\square Function f has:
- domain $A \times B$
- codomain C
\square For $f(a, b)=c$:
- input $a \in A$
- input $b \in B$
- output $c \in C$
\square Two input variables

Function Notation

$\square f(m, n)=m+n$

- Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$:
- $f(1,2)=1+2=3$
- $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- Let $m \in \mathbb{Z}$ and $n \in \mathbb{N}$:
- $f(-4,1)=-4+1=-3$
$-f: \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Z}$
\square Let $m \in \mathbb{Z}$ and $n \in \mathbb{R}$:
$-f(2,0.15)=2+0.15=2.15$
$-f: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}$

Onto / Surjective

\square A function $f: A$ to B is onto iff:
\square For every $b \in B$ there is an $a \in A$ with $f(a)=b$
$\square \forall b \exists a(f(a)=b)$
\square The codomain is equal to the range

Onto / Surjective

\square Determine if the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is onto:
$\square f(m, n)=m+n$
■ Onto!
\square For every $p \in \mathbb{Z}$ can we find a pair (m, n) such that $m+n=p$?

- Let $m=1, n=p-1$.
$\square f(m, n)=m^{2}+n^{2}$
- Not onto
\square There is no pair (m, n) such that $m^{2}+n^{2}=-1$.

Homework \#3

Section 2.4 hints and examples.

Summation

\square Notation: $\sum_{j=m}^{n} a_{j}=a_{m}+a_{m+1}+\cdots+a_{n}$

- Examples:

$$
\begin{aligned}
\sum_{k=1}^{5}(k+1) & =(1+1)+(2+1)+(3+1)+(4+1)+(5+1) \\
& =(2)+(3)+(4)+(5)+(6) \\
& =20
\end{aligned}
$$

$$
\begin{aligned}
S & =\{2,4,6,8\} \\
\sum_{j \in S} j & =2+4+6+8=20
\end{aligned}
$$

Double Summation

\square Example:
evaluate inner sum first

$$
\begin{aligned}
\sum_{i=1}^{2} \sum_{j=1}^{3} i+j & =\sum_{i=1}^{2}\left(\sum_{j=1}^{3} i+j\right) \\
& =\sum_{i=1}^{2}((i+1)+(i+2)+(i+3)) \\
& =\sum_{i=1}^{2}(3 i+6) \\
& =(3 \cdot 1+6)+(3 \cdot 2+6) \\
& =3+6+6+6 \\
& =21
\end{aligned}
$$

Products

\square Notation: $\prod_{j=m}^{n} a_{j}=a_{m} \times a_{m+1} \times \cdots \times a_{n}$
\square Examples:

$$
\begin{aligned}
\prod_{i=0}^{10} i & =0 \times 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \\
& =0 \\
\prod_{i=1}^{100}(-1)^{i} & =(-1)^{1} \times(-1)^{2} \times \cdots \times(-1)^{99} \times(-1)^{100} \\
& =-1 \times 1 \times \cdots \times-1 \times 1 \\
& =1
\end{aligned}
$$

Homework \#3

Section 3.4 hints and examples.

Number Theory Motivation

\square What does it deal with?
\square Studies properties and relationships of specific classes of numbers
\square Most commonly studied classes of numbers:

- Positive Integers
- Primes
\square What is this stuff good for?
\square Number theory used in cryptography
- Basis for RSA public-key system
\square Integers often used in programming
- Array indices

Proofs with Integer Division

- If $a, b \in \mathbb{Z}$ with $a \neq 0$:
$\square a \mid b$ if there exists a k such that $a k=b$.
\square \#7. Show that if a, b, and c are integers with $c \neq 0$, such that $a c \mid b c$, then $a \mid b$.
- If $a c \mid b c$, then there is an integer k such that:

$$
\begin{aligned}
a c k & =b c \\
\frac{1}{c}(a c k & =b c) \\
a k & =b
\end{aligned}
$$

\square Therefore, we can state that $a \mid b$.

Proofs with Integer Division

\#21. Show that if:
$\square n \mid m$, where n, m are positive integers > 1 , and
$\square a \equiv b(\bmod m)$, where a and b are integers
Then:
$\square a \equiv b(\bmod n)$

Since $n \mid m$, we know there exists an integer i such that $n i=m$ (by definition 1).

Proofs with Integer Division

\#21. Show that if:
$\square n \mid m$, where n, m are positive integers > 1 , and
$\square a \equiv b(\bmod m)$, where a and b are integers
Then:
$\square a \equiv b(\bmod n)$

Since $a \equiv b(\bmod m)$, we know that there exists an integer $a=b+j m$ (by theorem 1).

Proofs with Integer Division

\#21. Show that if:
$\square n \mid m$, where n, m are positive integers > 1 , and
$\square a \equiv b(\bmod m)$, where a and b are integers
Then:

$$
\begin{aligned}
& \square n i=m \\
& \begin{array}{ll}
\square n i=m \\
\square a=b+j m
\end{array} \longrightarrow \begin{aligned}
a & =b+j m \\
& =b+j n i
\end{aligned} \\
& =b+(j i) n \\
& =b+k n \\
& =b(\bmod n)
\end{aligned}
$$

Homework \#3

Section 3.5 hints and examples.

Euler ϕ-function

$\phi(n)=\#$ of positive integers $\leq n$ that are relatively prime to n

$$
\begin{aligned}
& \square \phi(4) \\
& \square \operatorname{gcd}(4,4)=4 \\
& \square \operatorname{gcd}(3,4)=1 \\
& \square \operatorname{gcd}(2,4)=2 \\
& \square \operatorname{gcd}(1,4)=1 \\
& \square \phi(4)=2
\end{aligned}
$$

$\square \phi(10)$
$\square \operatorname{gcd}(1,10)=1$
$\square \operatorname{gcd}(3,10)=1$
$\square \operatorname{gcd}(7,10)=1$
$\square \operatorname{gcd}(9,10)=1$
$\square \phi(10)=4$

Homework \#3

Section 3.6 hints and examples.

Number Conversion Motivation

- Binary:
\square Low-level language of computers
- Easy to represent in electrical systems ("on" versus "off")
\square Can implement Boolean logic
\square Octal:
- File permissions in Unix often use an octal representation
\square Decimal:
\square Number representation used in most modern languages
\square Hexadecimal:
- Used by HTML/CSS to represent colors
\square Character codes often represented in hexadecimal

Decimal Expansion

$\square(01011111)_{2}=$

Decimal Expansion

- $(01011111)_{2}=$

Decimal Expansion

$\square(01011111)_{2}=$

position

Decimal Expansion

$\square(01011111)_{2}=$

$$
0 \times 2^{7}+1 \times 2^{6}+0 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}
$$

$$
2^{6}+2^{4}+2^{3}+2^{2}+2^{1}+2^{0}=64+16+8+4+2+1=95
$$

Hexadecimal Expansion

$\square 177130=(?)_{16}$

$$
\begin{aligned}
& 177130 \div 16=\underbrace{11070.625}_{1070} \\
& 177130=16 \times 10 \\
& \square=16 \times 691
\end{aligned}+14
$$

Hexadecimal Expansion

$\square 177130=(?)_{16}$

177130	$=16 \times 11070+10$
11070	$=16 \times 691$
691	$=16 \times 43$
43	$=16 \times 2$
2	$=16 \times 3$
2	$\times 11$
	B

2	B	3	E	A

Hexadecimal Expansion

$\square 177130=(?) 16$

177130	$=16 \times 11070+10$
11070	$=16 \times 691$
691	$=16 \times 43$
43	$=16 \times 2$
2	$=16 \times 0$
2	+11

$(2 \mathrm{~B} 3 E A)_{16}$

Homework \#3

Section 3.7 hints and examples.

Examples

\square See PDF example for:

- Euclidean Algorithm
\square Greatest Common Divisor
- Modular Inverses

Fermat's Little Theorem

\square Show that $2^{340} \equiv 1(\bmod 11)$:
\square By Fermat's Little Theorem: $a^{10} \equiv 1(\bmod 11)$
\square We can rewrite $2^{340}=\left(2^{10}\right)^{34}$
\square Therefore we get:

$$
\begin{aligned}
2^{340} & =\left(2^{10}\right)^{34} \\
& \equiv(1)^{34}(\bmod 11) \\
& \equiv 1(\bmod 11)
\end{aligned}
$$

