
DISCUSSION #4
FRIDAY APRIL 27TH 2007

Sophie Engle

ECS20: Discrete Mathematics

Due Wednesday May 2nd

Homework 4: Hints6

Motivation
7

Problem Statement:

How do we estimate and compare
the runtime of different algorithms?

Motivation
8

Problem Statement:

How do we estimate and compare
the runtime of different algorithms?

What is the
“fastest”

sort algorithm?

Fastest
possible?

Fastest
on average?

Fastest for
small numbers?

Fastest for
big numbers?

Fastest
in theory?

Fastest
in practice?

Motivation
9

Problem Statement:

How do we estimate and compare
the runtime of different algorithms?

Solution:

 Measure number of operations as size of input grows

 Input size: 𝑛

 Number of operations: 𝑓(𝑛)

 Estimate the runtime class of algorithm

 Estimate upper bound: 𝒪(𝑓(𝑛))

 Estimate lower bound: Ω(𝑓(𝑛))

Estimating Number of Operations

Homework 4: Hints10

Example: Bubble Sort
11

 Bubble Sort Algorithm

Method of sorting elements of a set

 Small numbers “bubble” up to the top

 Large numbers “sink” to the bottom

 Visualization
 www.wanginator.de/studium/applets/bubblesort_en.html

http://www.wanginator.de/studium/applets/bubblesort_en.html
http://www.wanginator.de/studium/applets/bubblesort_en.html

Example: Bubble Sort
12

 Algorithm:

1 procedure bubbleSort(𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 0 to 𝑛 − 1

3 for 𝑗 = 0 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap(𝑎𝑗, 𝑎𝑗+1)

Example: Bubble Sort
13

 Algorithm:

1 procedure bubbleSort(𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 0 to 𝑛 − 1

3 for 𝑗 = 0 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap(𝑎𝑗, 𝑎𝑗+1)

input of 𝑛 elements

Example: Bubble Sort
14

 Algorithm:

1 procedure bubbleSort(𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 0 to 𝑛 − 1

3 for 𝑗 = 0 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap(𝑎𝑗, 𝑎𝑗+1)

outer loops 𝑛 times

Example: Bubble Sort
15

 Algorithm:

1 procedure bubbleSort(𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 1 to 𝑛 − 1

3 for 𝑗 = 1 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap(𝑎𝑗, 𝑎𝑗+1)

with inner loop 𝑛(𝑛 − 1)/2 times

Example: Bubble Sort
16

 Algorithm:

1 procedure bubbleSort(𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 1 to 𝑛 − 1

3 for 𝑗 = 1 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap(𝑎𝑗, 𝑎𝑗+1)

(assume swap operation
takes constant time)

worst case executes every time

Example: Bubble Sort
17

 Algorithm:

1 procedure bubbleSort(𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 1 to 𝑛 − 1

3 for 𝑗 = 1 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap(𝑎𝑗, 𝑎𝑗+1)

nn

nn
2
12

2
1

2

1

makes approximately:

operations

Example: Bubble Sort

 Notice that 𝑛2:

 Bounds the number of
operations

 Provides approximation
of operations

18

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

𝑛 (𝑛 − 1)
2

𝑛2

Growth of Functions

Homework 4: Hints19

Growth of Functions
20

 General Idea:

 Analyze algorithm

 Come up with function 𝑓(𝑛) which returns the number
of operations for an input of size 𝑛

 Approximate number of operations

 Use 𝒪(𝑛) to find a upper bound

 Use Ω(𝑛) to find a lower bound

 Determine class of function
 Linear 𝒪(1)

 Logarithmic 𝒪(log 𝑛)

 Polynomial 𝒪(𝑛𝑘)

 Exponential 𝒪(𝑘𝑛)

Big-𝒪 Notation
21

 Upper bound estimate
 Estimates growth for large inputs
 Care more about exponents

 Less about constants

 A function 𝑓(𝑥) ∈ 𝒪(𝑔(𝑥)) when:
 ∃ constants (called witnesses) 𝐶 and 𝑘 such that:
 |𝑓(𝑥)| ≤ 𝐶 |𝑔(𝑥)|

 whenever 𝑥 > 𝑘

 i.e. approximately whenever 𝑔(𝑥) bounds 𝑓(𝑥)
without its constants

Big-𝒪 Notation
22

 Show 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 is 𝒪(𝑥2).

 To show this, you must provide the witnesses!

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

𝑔(𝑥)=𝑥2

𝑓(𝑥)4𝑥2

𝑘 = 1

With a graph, we can
see that the following
witnesses work:

𝐶 = 4
𝑘 = 1

Big-𝒪 Notation
23

 Show 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 is 𝒪(𝑥2).

Without a graph, just start approximating:

 The maximum exponent is 2, so should be able to find
witnesses 𝐶 and 𝑘 for 𝑔(𝑥) = 𝑥2.

 Notice when 𝑥 > 1 then 𝑥2 > 𝑥 and 2𝑥2 > 2𝑥

 Thus we can write:
 𝑥2 + 2𝑥2 + 𝑥2 > 𝑥2 + 2𝑥 + 1 which means…

 4𝑥2 > 𝑥2 + 2𝑥 + 1

 Therefore we can set 𝐶 = 4 and 𝑘 = 1.

 Is 𝑓(𝑥) also 𝒪(𝑥3)?

 Yes, but less useful as an upper bound!

Big-𝒪 Notation
24

 Finding the big-𝒪 estimate:

 Don’t need smallest 𝐶 and 𝑘 possible.

 Just find witnesses that are easy to come by!

However, want tightest 𝑔(𝑥) possible.

 With polynomial functions, choose a 𝑔(𝑥) with the
lowest possible exponent.

 For large 𝑥:

 1 < log 𝑥 < 𝑥 < 𝑥 log 𝑥 < 𝑥2 < 2𝑥 < 𝑥!

 (see graph in book)

Big-𝒪 Examples
25

 Find big-𝒪 for 𝑓(𝑥) = (34 – 2𝑥) / (5𝑥 – 1).

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

𝑔(𝑥)

𝑓(𝑥)

1

4

3

)(

15

23
)(

3

4

k

C

xxg

x

xx
xf

Big-𝒪 Examples
26

 Find big-𝒪 for 𝑓(𝑥) = log10 (2𝑥) + 1010 𝑥2.

0

102

)(

10

2

k

C

xxg

Big-Ω and Big-Θ Notation
27

 Big-Ω (Omega) Notation

 Provides lower bound for large 𝑥

 A function 𝑓(𝑥) ∈ Ω(𝑔(𝑥)) when:

 |𝑓(𝑥)| ≥ 𝐶 |𝑔(𝑥)| for witnesses 𝐶, 𝑘 whenever 𝑥 > 𝑘

 Big-Θ (Theta) Notation

 Provides both upper and lower bound for large 𝑥

 A function 𝑓(𝑥) ∈ Θ(𝑔(𝑥)) when:

 𝑓(𝑥) ∈ 𝒪(𝑔(𝑥))

 𝑓(𝑥) ∈ Ω(𝑔(𝑥))

Big-Ω and Big-Θ Example
28

 Show 𝑓(𝑥) = 7𝑥2 + 1 is Θ(𝑥2).

 Show 𝑓(𝑥) is 𝒪(𝑥2).

 7𝑥2 + 1 ≤ 7𝑥2 + 𝑥2 = 8𝑥2 where 𝑥 ≥ 1

 Show 𝑓(𝑥) is Ω(𝑥2).

 7𝑥2 + 1 ≥ 7𝑥2 where 𝑥 ≥ 1

 Therefore, 𝑓(𝑥) is Θ(𝑥2).

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

