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Motivation
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Problem Statement:

How do we estimate and compare 
the runtime of different algorithms?
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Problem Statement:

How do we estimate and compare 
the runtime of different algorithms?

What is the 
“fastest” 

sort algorithm?

Fastest 
possible?

Fastest 
on average?

Fastest for 
small numbers?

Fastest for 
big numbers?

Fastest 
in theory?

Fastest 
in practice?



Motivation
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Problem Statement:

How do we estimate and compare 
the runtime of different algorithms?

Solution:

 Measure number of operations as size of input grows

 Input size: 𝑛

 Number of operations: 𝑓(𝑛)

 Estimate the runtime class of algorithm

 Estimate upper bound: 𝒪( 𝑓(𝑛) )

 Estimate lower bound: Ω( 𝑓(𝑛) )



Estimating Number of Operations

Homework 4: Hints10



Example: Bubble Sort
11

 Bubble Sort Algorithm

Method of sorting elements of a set

 Small numbers “bubble” up to the top

 Large numbers “sink” to the bottom

 Visualization
 www.wanginator.de/studium/applets/bubblesort_en.html

http://www.wanginator.de/studium/applets/bubblesort_en.html
http://www.wanginator.de/studium/applets/bubblesort_en.html


Example: Bubble Sort
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 Algorithm:

1 procedure bubbleSort( 𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 0 to 𝑛 − 1

3 for 𝑗 = 0 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap( 𝑎𝑗, 𝑎𝑗+1 )



Example: Bubble Sort
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 Algorithm:

1 procedure bubbleSort( 𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 0 to 𝑛 − 1

3 for 𝑗 = 0 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap( 𝑎𝑗, 𝑎𝑗+1 )

input of 𝑛 elements



Example: Bubble Sort
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 Algorithm:

1 procedure bubbleSort( 𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 0 to 𝑛 − 1

3 for 𝑗 = 0 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap( 𝑎𝑗, 𝑎𝑗+1 )

outer loops 𝑛 times



Example: Bubble Sort
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 Algorithm:

1 procedure bubbleSort( 𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 1 to 𝑛 − 1

3 for 𝑗 = 1 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap( 𝑎𝑗, 𝑎𝑗+1 )

with inner loop 𝑛(𝑛 − 1)/2 times



Example: Bubble Sort
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 Algorithm:

1 procedure bubbleSort( 𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 1 to 𝑛 − 1

3 for 𝑗 = 1 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap( 𝑎𝑗, 𝑎𝑗+1 )

(assume swap operation 
takes constant time)

worst case executes every time



Example: Bubble Sort
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 Algorithm:

1 procedure bubbleSort( 𝑎1, 𝑎2 , … , a𝑛)

2 for 𝑖 = 1 to 𝑛 − 1

3 for 𝑗 = 1 to 𝑛 − 𝑖

4 if 𝑎𝑗 > 𝑎𝑗+1 then

5 swap( 𝑎𝑗, 𝑎𝑗+1 )
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Example: Bubble Sort

 Notice that 𝑛2:

 Bounds the number of 
operations

 Provides approximation 
of operations
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Growth of Functions

Homework 4: Hints19



Growth of Functions
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 General Idea:

 Analyze algorithm

 Come up with function 𝑓(𝑛) which returns the number 
of operations for an input of size 𝑛

 Approximate number of operations

 Use 𝒪(𝑛) to find a upper bound

 Use Ω(𝑛) to find a lower bound

 Determine class of function
 Linear 𝒪(1)

 Logarithmic 𝒪(log 𝑛)

 Polynomial 𝒪(𝑛𝑘)

 Exponential 𝒪(𝑘𝑛)



Big-𝒪 Notation
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 Upper bound estimate
 Estimates growth for large inputs
 Care more about exponents

 Less about constants

 A function 𝑓(𝑥) ∈ 𝒪( 𝑔(𝑥) ) when:
 ∃ constants (called witnesses) 𝐶 and 𝑘 such that:
 |𝑓(𝑥)| ≤ 𝐶 |𝑔(𝑥)|

 whenever 𝑥 > 𝑘

 i.e. approximately whenever 𝑔(𝑥) bounds 𝑓(𝑥)
without its constants 



Big-𝒪 Notation
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 Show 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 is 𝒪(𝑥2).

 To show this, you must provide the witnesses!
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Big-𝒪 Notation
23

 Show 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 is 𝒪(𝑥2).

Without a graph, just start approximating:

 The maximum exponent is 2, so should be able to find 
witnesses 𝐶 and 𝑘 for 𝑔(𝑥) = 𝑥2.

 Notice when 𝑥 > 1 then 𝑥2 > 𝑥 and 2𝑥2 > 2𝑥

 Thus we can write:
 𝑥2 + 2𝑥2 + 𝑥2 > 𝑥2 + 2𝑥 + 1 which means…

 4𝑥2 > 𝑥2 + 2𝑥 + 1

 Therefore we can set 𝐶 = 4 and 𝑘 = 1.

 Is 𝑓(𝑥) also 𝒪(𝑥3)?

 Yes, but less useful as an upper bound!



Big-𝒪 Notation
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 Finding the big-𝒪 estimate:

 Don’t need smallest 𝐶 and 𝑘 possible.

 Just find witnesses that are easy to come by!

However, want tightest 𝑔(𝑥) possible.

 With polynomial functions, choose a 𝑔(𝑥) with the 
lowest possible exponent.

 For large 𝑥:

 1 < log 𝑥 < 𝑥 < 𝑥 log 𝑥 < 𝑥2 < 2𝑥 < 𝑥!

 (see graph in book)



Big-𝒪 Examples
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 Find big-𝒪 for 𝑓(𝑥) = (34 – 2𝑥) / (5𝑥 – 1).
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Big-𝒪 Examples
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 Find big-𝒪 for 𝑓(𝑥) = log10 (2𝑥) + 1010 𝑥2.
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Big-Ω and Big-Θ Notation
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 Big-Ω (Omega) Notation

 Provides lower bound for large 𝑥

 A function 𝑓(𝑥) ∈ Ω( 𝑔(𝑥) ) when:

 |𝑓(𝑥)| ≥ 𝐶 |𝑔(𝑥)|  for witnesses 𝐶, 𝑘 whenever 𝑥 > 𝑘

 Big-Θ (Theta) Notation

 Provides both upper and lower bound for large 𝑥

 A function 𝑓(𝑥) ∈ Θ( 𝑔(𝑥) ) when:

 𝑓(𝑥) ∈ 𝒪( 𝑔(𝑥) )

 𝑓(𝑥) ∈ Ω( 𝑔(𝑥) )



Big-Ω and Big-Θ Example
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 Show 𝑓(𝑥) = 7𝑥2 + 1 is Θ(𝑥2).

 Show 𝑓(𝑥) is 𝒪(𝑥2).

 7𝑥2 + 1 ≤ 7𝑥2 + 𝑥2 = 8𝑥2 where 𝑥 ≥ 1

 Show 𝑓(𝑥) is Ω(𝑥2).

 7𝑥2 + 1 ≥ 7𝑥2 where 𝑥 ≥ 1

 Therefore, 𝑓(𝑥) is Θ(𝑥2).

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10


