Extra Examples

 Chinese Remainder Theorem and Solving Systems of Linear Congruencies
Introduction

In this guide, I will go over how to solve systems of linear congruencies using the Chinese Remainder Theorem. Before that however, I give quick examples on how to reduce $a \bmod m$ when $a>m$ and find the modular inverse of $a \bmod m$.

\square Reducing $a \bmod m$

Sometimes, we have an equation $a \bmod m$ where $a>m$. This can make finding inverses and solving systems of linear congruencies more difficult to work with. In these cases, you should first reduce $a \bmod m$. To do this, we want to find an integer b such that $a \equiv b \bmod m$ where $b<m$.

Confused? Too many variables? How about a specific example!
Let $a=176$ and $m=14$, giving us the equation $176 \bmod 14$. Since $176>14$, lets try to reduce this to something smaller. The first step is to rewrite 176 in the form:

$$
\begin{aligned}
a & =m q+r \\
176 & =14 * q+r
\end{aligned}
$$

where q is a quotient and r is the remainder. We can find q and r as follows:

$$
\begin{aligned}
q & =\left\lfloor\frac{a}{m}\right\rfloor=\left\lfloor\frac{176}{14}\right\rfloor=\lfloor 12.57 \ldots\rfloor=12 \\
r & =a-m q=176-14 * 12=176-168=8
\end{aligned}
$$

Tada! Our answer is r. Therefore, $176 \bmod 12=8$. So instead of writing $176 \bmod 12$ we can write $8 \bmod 12$ and work with a much smaller number.

How about another example? This time, we want to reduce $4 \bmod 3$. Solving everything we get:

$$
\begin{aligned}
q & =\left\lfloor\frac{4}{3}\right\rfloor=\lfloor 1.333 \ldots\rfloor=1 \\
r & =4-3 * 1=1
\end{aligned}
$$

Thus, we can rewrite 4 as $4=3 * 1+1$. Therefore, $1 \equiv 4 \bmod 3$.
Okay, here is a recap all of the steps. To reduce an equation $a \bmod m$ where $a>m$:

1. Rewrite a as $a=m q+r$ where $q=\lfloor a / m\rfloor$ and $r=a-m q$.
2. This gives us $r=a \bmod m$, or equivalently, $a \equiv r \bmod m$.

Or... just use a calculator :)

Finding Modular Inverses (Examples)

To find the modular inverse of $a \bmod m$, we are looking for an integer s such that $s * a \equiv 1 \bmod m$. (I'm assuming you have already reduced $a \bmod m$ if $a>m$.)

First, find the $\operatorname{gcd}(a, m)$ using the Euclidean Algorithm. This time, I'm going to make sure I match the format in the book. Let $r_{0}=m$ and $r_{1}=a$. Then your equations should always be in the form:

$$
\begin{aligned}
r_{0} & =r_{1} * q_{1}+r_{2} \\
r_{1} & =r_{2} * q_{2}+r_{3} \\
r_{2} & =r_{3} * q_{3}+r_{4} \\
\vdots & \\
r_{n-2} & =r_{n-1} * q_{n-1}+r_{n} \\
r_{n-1} & =r_{n} * q_{n}
\end{aligned}
$$

If $r_{n}=1$ then $\operatorname{gcd}(a, m)=1$ and we can find an inverse. Discard the last equation r_{n-1} to get:

$$
\begin{aligned}
r_{0} & =r_{1} * q_{1}+r_{2} \\
r_{1} & =r_{2} * q_{2}+r_{3} \\
r_{2} & =r_{3} * q_{3}+r_{4} \\
& \vdots \\
r_{n-2} & =r_{n-1} * q_{n-1}+r_{n}=r_{n-1} * q_{n-1}+1
\end{aligned}
$$

What you have should match this, except you'll actually have numbers instead of variables everywhere. Put back in every variable r_{i} except r_{n}. Then replace r_{0} with the variable m and r_{1} with the variable a. (We'll go over a numeric example in a moment.)

The next step is to rewrite everything in the form $r_{i}=\ldots$ such that we get:

$$
\begin{array}{ccc}
a=m * q_{1}+r_{2} & & r_{2}=a-m * q_{1} \\
m=r_{2} * q_{2}+r_{3} & & r_{3}=m-r_{2} * q_{2} \\
r_{2}=r_{3} * q_{3}+r_{4} & \longrightarrow & r_{4}=r_{2}-r_{3} * q_{3} \\
\vdots & \vdots & \vdots \\
r_{n-2}=r_{n-1} * q_{n-1}+1 & & 1=r_{n-2}-r_{n-1} * q_{n-1}
\end{array}
$$

Then, starting with the last equation, backwards substitute until you get something in the form:

$$
1=s * a+t * m
$$

Once that happens, we know our modular inverse of $a \bmod m$ is s.
I don't know about you, but all of these variables are making my head hurt. How about a real example!

Let $a=34$ and $m=55$. We want to find the modular inverse of $34 \bmod 55$.
Step 1: First we need to use the Euclidean Algorithm to find the gcd $(34,55)$. On the left column I'll just show what the variables are, and on the right column will be the actual values:

$$
\begin{aligned}
& r_{0}=r_{1} * q_{1}+r_{2} \quad \longrightarrow \quad 55=34 * q_{1}+r_{2} \quad \longrightarrow \quad 55=34 * 1+21 \\
& r_{1}=r_{2} * q_{2}+r_{3} \quad \longrightarrow \quad 34=21 * q_{2}+r_{3} \quad \longrightarrow \quad 34=21 * 1+13 \\
& r_{2}=r_{3} * q_{3}+r_{4} \quad \longrightarrow \quad 21=13 * q_{3}+r_{4} \quad \longrightarrow \quad 21=13 * 1+8 \\
& r_{3}=r_{4} * q_{4}+r_{5} \quad \longrightarrow \quad 13=8 * q_{4}+r_{5} \quad \longrightarrow \quad 13=8 * 1+5 \\
& r_{4}=r_{5} * q_{5}+r_{8} \quad \longrightarrow \quad 8=5 * q_{5}+r_{6} \quad \longrightarrow \quad 8=5 * 1+3 \\
& r_{5}=r_{6} * q_{6}+r_{7} \quad \longrightarrow \quad 5=3 * q_{6}+r_{7} \quad \longrightarrow \quad 5=3 * 1+2 \\
& r_{6}=r_{7} * q_{7}+r_{8} \quad \longrightarrow \quad 3=2 * q_{7}+r_{8} \quad \longrightarrow \quad 3=2 * 1+1 \\
& r_{7}=r_{8} * q_{8} \quad \longrightarrow \quad 2=1 * q_{8} \quad \longrightarrow \quad 2=1 * 2
\end{aligned}
$$

Wow, I picked a bad pair of numbers. That took forever. Well, now it is time for the next step.
Step 2: Well, we can see our last remainer $r_{8}=1$. This means $\operatorname{gcd}(34,55)=1$ and there is an inverse. First, we ditch the last equation r_{7} to get:

$$
\begin{aligned}
55 & =34 * 1+21 \\
34 & =21 * 1+13 \\
21 & =13 * 1+8 \\
13 & =8 * 1+5 \\
8 & =5 * 1+3 \\
5 & =3 * 1+2 \\
3 & =2 * 1+1
\end{aligned}
$$

Now we reassign the variables. We put back every r_{i} except for the last $r_{n}=1$ (which in this case is r_{8}), and then replace r_{0} with m and r_{1} with a :

$55=34 * 1+21$	\longrightarrow	$r_{0}=r_{1} * 1+r_{2}$	\longrightarrow	$m=a * 1+r_{2}$
$34=21 * 1+13$	\longrightarrow	$r_{1}=r_{2} * 1+r_{3}$	\longrightarrow	$a=r_{2} * 1+r_{3}$
$21=13 * 1+8$	\longrightarrow	$r_{2}=r_{3} * 1+r_{4}$	\longrightarrow	$r_{2}=r_{3} * 1+r_{4}$
$13=8 * 1+5$	\longrightarrow	$r_{3}=r_{4} * 1+r_{5}$	\square	$r_{3}=r_{4} * 1+r_{5}$
$8=5 * 1+3$	\longrightarrow	$r_{4}=r_{5} * 1+r_{6}$	\square	$r_{4}=r_{5} * 1+r_{6}$
$5=3 * 1+2$	\longrightarrow	$r_{5}=r_{6} * 1+r_{7}$	\longrightarrow	$r_{5}=r_{6} * 1+r_{7}$
$3=2 * 1+1$	-	$r_{6}=r_{7} * 1+1$	\longrightarrow	$r_{6}=r_{7} * 1+1$

Step 3: Now we rearrange. We rewrite every equation to be in the form $r_{i}=\ldots$ and get:

$$
\begin{array}{rlrl}
m & =a * 1+r_{2} & & r_{2}=m-a \\
a & =r_{2} * 1+r_{3} & & \longrightarrow \\
r_{2} & =r_{3} * 1+r_{4} & & r_{3}=a-r_{2} \\
r_{3} & =r_{4} * 1+r_{5} \\
r_{4} & =r_{5} * 1+r_{6} & & r_{4}=r_{2}-r_{3} \\
r_{5} & =r_{6} * 1+r_{7} & & r_{5}=r_{3}-r_{4} \\
r_{6} & =r_{7} * 1+1 & & \longrightarrow \\
r_{6}=r_{4}-r_{5} \\
r_{7} & =r_{5}-r_{6} \\
1 & & \longrightarrow & 1
\end{array}
$$

Step 4: Finally, we use backwards substitution and get:

$$
\begin{aligned}
1 & =r_{6}-r_{7} & & \\
& =r_{6}-\left(r_{5}-r_{6}\right) & & \text { substitute in } r_{7} \\
& =2 r_{6}-r_{5} & & \text { simplify } \\
& =2\left(r_{4}-r_{5}\right)-r_{5} & & \text { substitute in } r_{6} \\
& =2 r_{4}-3 r_{5} & & \text { simplify } \\
& =2 r_{4}-3\left(r_{3}-r_{4}\right) & & \text { substitute in } r_{5} \\
& =5 r_{4}-3 r_{3} & & \text { simplify } \\
& =5\left(r_{2}-r_{3}\right)-3 r_{3} & & \text { substitute in } r_{4} \\
& =5 r_{2}-8 r_{3} & & \text { sumplify } \\
& =5 r_{2}-8\left(a-r_{2}\right) & & \text { simplifify in } r_{3} \\
& =13 r_{2}-8 a & & \text { substitute in } r_{2} \\
& =13(m-a)-8 a & & \\
& =13 m-21 a & &
\end{aligned}
$$

Finally, we have the equation in the form we want:

$$
1=-21 * a+13 * m
$$

...almost. We can't have a negative inverse. So time to make it positive:

$$
-21 \bmod 55 \equiv-21+55 \bmod 55 \equiv 34 \bmod 55
$$

Therefore our inverse $s=34$. If you plug $34 * 34 \bmod 55$ in your calculator, you'll get 1 !
Okay, so the steps are:

1. Reduce $a \bmod m$ if necessary.
2. Find the $\operatorname{gcd}(a, m)$ using the Euclidean Algorithm.
3. If $r_{n}=1$ we know $\operatorname{gcd}(a, m)=1$ and there is an inverse.
4. Reassign the variables $r_{1}, r_{2}, \ldots, r_{n-1}$ (all remainders except r_{n}).
5. Reassign the variables r_{0} to m and r_{1} to a.
6. Rearrange the equations into the form $r_{i}=r_{i-2}-r_{i-1} * q_{i-1}$.
7. Backwards substitute starting with r_{n} until we get an equation in the form $1=s * a+t * m$.
8. If s is negative, add m until it is positive!

After all of these steps, we know the inverse is s. Just remember, reassign, rearrange, and substitute!

Solving Systems of Congruencies Using the Chinese Remainder Theorem

Here are the basic steps. This is meant more for a reference. For more detail, skip to one of the examples.

Given a system of congruencies where $m_{1}, m_{2}, \ldots, m_{n}$ are pairwise relatively prime positive integers:

$$
\begin{aligned}
& x \equiv a_{1} \bmod m_{1} \\
& x \equiv a_{2} \bmod m_{2} \\
& \vdots \\
& x \equiv a_{n} \bmod m_{n}
\end{aligned}
$$

Using the Chinese Remainder Theorem, if we solve the following:

$$
\begin{aligned}
m & =\prod_{i=1}^{n} m_{i}=m_{1} m_{2} \cdots m_{n} \\
M_{i} & =m / m_{i} \\
M_{i} s_{i} & =1 \bmod m_{i}\left(\text { i.e. } s_{i} \text { is the modular inverse of } M_{i} \bmod m_{i}\right) \\
x & =\sum_{i=1}^{n} a_{i} M_{i} s_{i}=a_{1} M_{1} s_{1}+a_{2} M_{2} s_{2}+\cdots+a_{n} M_{n} y_{n}
\end{aligned}
$$

then we know that $x \bmod m$ is the unique solution to our system of congruencies.

Solving Systems of Congruencies: Example 1

Example \#19 on page 245. Find all solutions to:

$$
\begin{aligned}
& x \equiv 1 \bmod 2 \\
& x \equiv 2 \bmod 3 \\
& x \equiv 3 \bmod 5 \\
& x \equiv 4 \bmod 11
\end{aligned}
$$

Before we start, let's be clear on what our variables are:

$$
\begin{array}{rrrr}
a_{1} & =1 & a_{2} & =2 \\
m_{1} & =2 & m_{2} & =3
\end{array}
$$

Then, solve for m :

$$
m=2 * 3 * 5 * 11=330
$$

Next, lets find all the M_{i} terms:

$$
\begin{array}{rlrrl}
M_{1}=m / m_{1} & M_{2} & =m / m_{2} & M_{3} & =m / m_{3}
\end{array} \begin{array}{lrl}
& =m / m_{4} \\
=330 / 2 & & =330 / 3
\end{array}
$$

Now the tough part! We need to find the inverses s_{1}, s_{2}, s_{3}, and s_{4}.
The value s_{1} needs to be the modular inverse of $M_{1} \bmod m_{1}$. In this case, we need the inverse of $165 \bmod 2$. Since $165>2$ we should reduce this first. We can write $165=2 * 82+1$ meaning $165 \bmod 2=1$. Therefore $165 \bmod 2 \equiv 1 \bmod 2$, and we can alternatively find the inverse of $1 \bmod 2$. This is much easier! We just need a value s_{1} such that $1 * s_{1} \equiv 1 \bmod 2$. In this case, we can see that $s_{1}=1$ without having to use the Euclidean Algorithm and backwards substitution.

Next, we need s_{2} to be the modular inverse of $110 \bmod 3$. If we reduce this we see $110 \bmod 3 \equiv$ $2 \bmod 3$. Therefore we just need the inverse to $2 \bmod 3$. Again, this is much easier to find. In fact, $s_{2}=2$ but let's work through the algorithm to be sure. (More details on the algorithm is at the end of this document.)

Using the Euclidean Algorithm for the $\operatorname{gcd}(2,3)$ we get:

$$
\begin{aligned}
& 3=2 * 1+1 \\
& 2=1 * 2
\end{aligned}
$$

Therefore $\operatorname{gcd}(2,3)=1$ and we can find the inverse. We drop the last equation, and reassign the variables to get:

$$
3=2 * 1+1 \quad \longrightarrow \quad m_{2}=a_{2} * 1+1
$$

Rearranged we get:

$$
1=m_{2}-a_{2}
$$

From this, we can tell that $s_{2}=-1$?? Ew! Negative numbers! Whenever you come across a negative number modulo m_{2}, keep adding m_{2} until the number is positive. Therefore:

$$
-1 \bmod 3 \equiv-1+3 \bmod 3 \equiv 2 \bmod 3
$$

Tada! We have a positive number now, and $s_{2}=2$.
Tired yet? But we have 2 more inverses to find! We need s_{3} to be the modular inverse of $66 \bmod 5$. Reduced, we get $66 \bmod 5 \equiv 1 \bmod 5$. Again, we luck out with an easy one to find. The inverse $s_{3}=1$ in this case.

Finally, s_{4} must be the modular inverse of $30 \bmod 11$. Reduced, we get $30 \bmod 11=8 \bmod 11$. Boo... looks like it is time for our fancy algorithm! (You are excited, I can tell.)

First, find the $\operatorname{gcd}(8,11)$ using the Euclidean Algorithm:

$$
\begin{aligned}
11 & =8 * 1+3 \\
8 & =3 * 2+2 \\
3 & =2 * 1+1 \\
2 & =1 * 2
\end{aligned}
$$

The $\operatorname{gcd}(8,11)=1$ so time to find the inverse. Drop the last equation and begin to reassign variables:

$$
\begin{aligned}
& 11=8 * 1+3 \quad \longrightarrow \quad r_{0}=r_{1} * 1+r_{2} \quad \longrightarrow \quad m_{4}=a_{4} * 1+r_{2} \\
& 8=3 * 2+2 \quad \longrightarrow \quad r_{1}=r_{2} * 2+r_{3} \quad \longrightarrow \quad a_{4}=r_{2} * 2+r_{3} \\
& 3=2 * 1+1 \quad \longrightarrow \quad r_{2}=r_{3} * 1+1 \quad \longrightarrow \quad r_{2}=r_{3} * 1+1
\end{aligned}
$$

Next, we rearrange!

$$
\begin{array}{rlr}
m_{4}=a_{4} * 1+r_{2} & \longrightarrow & r_{2}=m_{4}-a_{4} \\
a_{4}=r_{2} * 2+r_{3} & \longrightarrow & r_{3}=a_{4}-2 r_{2} \\
r_{2}=r_{3} * 1+1 & & 1=r_{2}-r_{3}
\end{array}
$$

And now we use backwards substitution to get:

$$
\begin{aligned}
1 & =r_{2}-r_{3} \\
& =r_{2}-\left(a_{4}-2 r_{2}\right) r_{2}-a_{4}+2 r_{2}=3 r_{2}-a_{4} \\
& =3\left(m_{4}-a_{4}\right)-a_{4}=3 m_{4}-3 a_{4}-a_{4} \\
& =-4 a_{4}+2 m_{4}
\end{aligned}
$$

Again, we get a negative inverse which we don't want. So we have to make it positive:

$$
-4 \bmod 11 \equiv-4+11 \bmod 11 \equiv 7 \bmod 11
$$

Therefore our modular inverse $s_{4}=7$. You can double check this in a calculator, and see that $8 * 7 \equiv 1 \bmod 11$.

At this point we have all of our modular inverses:
$s_{1}=1$
$s_{2}=2$
$s_{3}=1$
$s_{4}=7$

Finally, we can solve for x :

$$
\begin{aligned}
x & =\sum_{i=1}^{n} a_{i} M_{i} s_{i} \\
& =a_{1} M_{1} s_{1}+a_{2} M_{2} s_{2}+a_{3} M_{3} s_{3}+a_{4} M_{4} s_{4} \\
& =1 * 165 * 1+2 * 110 * 2+3 * 66 * 1+4 * 30 * 7 \\
& =1643
\end{aligned}
$$

However, we aren't done yet! This is a solution $\bmod m$. So we need to reduce this to get:

$$
x \equiv 1643 \bmod m \equiv 1643 \bmod 330 \equiv 323 \bmod 330
$$

WE ARE DONE! The solution to this system of congruencies is $x \equiv 323 \bmod 330$. This means any number in the form $323+330 k$ where k is a positive integer will work. Just try it out on a calculator!

