DISCUSSION \#8 FRIDAY MAY 25TH 2007

Sophie Engle (Teacher Assistant)
ECS20: Discrete Mathematics

2

Homework 8

Hints and Examples

3

Section 5.4

Binomial Coefficients

Binomial Theorem

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

\square Example:

$$
\begin{aligned}
(x+y)^{2} & =\sum_{j=0}^{2}\binom{2}{j} x^{2-j} y^{j} \\
& =\binom{2}{0} x^{2} y^{0}+\binom{2}{1} x^{1} y^{1}+\binom{2}{2} x^{0} y^{2} \\
& =x^{2}+2 x y+y^{2}
\end{aligned}
$$

Binomial Theorem

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

\square What is the coefficient of x^{9} in $(2-x)^{19}$?
\square Rewrite as $((-x)+2)^{19}$
\square We encounter x^{9} when $n-j=9$, or when $j=10$
\square Therefore that term will look like:

$$
\binom{19}{10} *(-x)^{9} * 2^{10}=\binom{19}{10} *(-1)^{9} * x^{9} * 2^{10}=-94,595,072 x^{9}
$$

- Therefore coefficient is -94,595,072.

Example: Expanding $\left(11_{b}\right)^{4}$

Suppose b is an integer such that $b \geq 7$. Find the base- b expansion of $\left(11_{b}\right)^{4}$.
\square Hint 1: The numeral 11 in base b represents the number $b+1$.
$\square 11_{2}$ is $2+1=3$ in binary
$\square 11_{10}$ is $10+1=11$ in decimal
$\square 11_{16}$ is $16+1=17$ in hexadecimal

Example: Expanding $\left(11_{b}\right)^{4}$

\square Hint 1: The numeral 11 in base b represents the number $b+1$.
\square Hint 2: Therefore you want to find $(b+1)^{4}$
\square Use Binomial Theorem to expand.
\square Use Pascal's Triangle to find coefficients.
\square Hint 3: As long as $b \geq 7$, any integer <7 in base b is that digit.

Example: Expanding $\left(11_{b}\right)^{4}$

\square Hint 3: When $i<b$, then $i=(i)_{b}$ (meaning there is no change in the digits used.
\square For example: $4=(4)_{16}$ and $6=(6)_{8}$ but $3=(11)_{2}$
\square Hint 4: The resulting numeral will be the concatenation of the coefficients.
\square For example:

$$
13=1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=(1101)_{2}
$$

9

Section 6.1

Introduction to Discrete Probability

Finite Probability

$\square S$: Set of possible outcomes
$\square E$: An event such that $E \subseteq S$
$\square p(E)$: Probability of event E where

$$
p(E)=|E| \div|S|
$$

Example: Choosing Cards

What is the probability you choose a king? A diamond?
A king or a diamond?

Example: Choosing Cards

$\square S$: Deck of cards
\square What is the size of S ?

- $|S|=52$ cards total

Example: Choosing Cards

$\square S$: Deck of cards

			3	4	5	6	\bigcirc	8	*		${ }_{0}$	K		-	2	-	4	5	-	7	8	,			Q	K
A	1	2		4	5	6	7	8	9	10	Q	K	A	1	2	3	4	5	6	7	8	9	10			K
-	v	\checkmark	-	-	\checkmark	-	\bullet	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\uparrow	\wedge	\uparrow	\wedge	\rightarrow	\wedge	\uparrow	a	-	\rightarrow	-	${ }^{\text {a }}$	\uparrow	\cdots

- E_{1} : King Cards

$\square\left|E_{1}\right|=4$
$p\left(E_{1}\right)=4 / 52$
$\square E_{2}$: Diamond Cards

$\square\left|E_{2}\right|=13$
$\square p\left(E_{2}\right)=13 / 52$

Example: Choosing Cards

$\square p\left(E_{1}\right)$ gives probability we select a king.
$\square p\left(E_{2}\right)$ gives probability we select a diamond.
\square What about the probability that we select a king or diamond?

Example: Choosing Cards

\square What about the probability that we select a king or diamond?

$\square p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{1}\right)-p\left(E_{1} \cap E_{2}\right)$
$\square 4 / 52+13 / 52-1 / 52=16 / 52$

Example: Two Pairs Poker Hands

What is the probability that a five-card poker hand contains two pairs?

Example: Two Pairs Poker Hands

What about the probability that a five-card poker hand contains two pairs?
\square Looking for two pairs, not a full house (etc.)
\square What is a pair?
$\square 2$ cards with:
■ Same type or number
■ Different suits

Example: Two Pairs Poker Hands

What about the probability that a five-card poker hand contains two pairs?
\square What is our sample space S ?
\square Set of all poker hands

- $|S|=C(52,5)$
\square How do we calculate $|E|$?

Example: Two Pairs Poker Hands

\square How do we calculate $|E|$?
\square Use product rule to combine:
■ Possible ways to choose two pairs
■ Possible ways to choose last card
\square How do we choose two pairs?
\square How do we choose the last card?

Example: Two Pairs Poker Hands

\square How do we choose two pairs?
\square (1) Choose two types
$6{ }^{10}$

Types: \{ A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q K \}
$C(13,2)$
\square (2) For each type, choose two suits

$C(4,2)$
\square (3) Combine using product rule $C(13,2) \cdot C(4,2) \cdot C(4,2)$

Example: Two Pairs Poker Hands

\square How do we choose the last card?

\square Number of choices reduced
■ Can't choose cards already selected

- Can't choose types already selected (no full house)
\square Choose 1 out of remaining cards $C(44,1)$

Example: Two Pairs Poker Hands

What about the probability that a five-card poker hand contains two pairs?
\square Combine all the results
$\square p(E)=\underbrace{C(13,2) \cdot C(4,2) \cdot C(4,2)}_{\text {choose } 2 \text { pairs }} \cdot \underbrace{C(44,1)}_{\text {last card }}$

Example: Rolling Dice

Which is more likely:

 rolling a total of 9 when two dice are rolled when three dice are rolled?
Example: Rolling Dice

Which is more likely: rolling a 9 when two dice are rolled or when three dice are rolled?
\square What is the probability of:
\square Rolling a 9 when two dice are rolled?
\square Rolling a 9 when three dice are rolled?

Example: Rolling Dice

\square Probability of rolling a 9 with two dice
\square What is our sample space $|S|$?
$\square 6 \cdot 6=36$ possible outcomes rolling 2 dice
\square What is our event $|E|$?

- Enumerate all pairs which sum to 9
$\square(6,3),(3,6),(5,4)$, and $(4,5)$
$\square 4$ possible ways to roll a 9
$\square p(E)=4 / 36 \approx 0.111$

Example: Rolling Dice

\square Probability of rolling a 9 with three dice
\square What is our sample space $|S|$?
$■ 6 \cdot 6 \cdot 6=216$ possible outcomes rolling 3 dice
\square What is our event $|E|$?
\square Enumerate all triples which sum to 9

$\square p(E)=25 / 216 \approx 0.116$

Example: Rolling Dice

Which is more likely: rolling a 9 when two dice are rolled or when three dice are rolled?
\square Rolling a 9 with three dice is more likely.

Example: Monty Hall Problem

Example: Monty Hall Problem

\square Why is this the best strategy?
\square Look at overall outcomes!

Example: Monty Hall Problem

\square Why is this the best strategy?
\square Look at overall outcomes!

Example: Monty Hall Problem

\square Why is this the best strategy?
\square Look at overall outcomes!

Not Switching Wins

Not Switching Loses

Not Switching Loses

Example: Monty Hall Problem

\square Why is this the best strategy?
\square Look at overall outcomes!

Switching Wins

Example: Monty Hall Problem

\square Why is this the best strategy?
\square Not switching wins $1 / 3$ times
\square Switching wins $2 / 3$ times
\square What happens when you have four doors?
\square What is probability you win when switching?
\square What is probability you win when not switching?

